Do you want to publish a course? Click here

Generation of optical vortex light beams by volume holograms with embedded phase singularity

167   0   0.0 ( 0 )
 Added by Aleksandr Bekshaev
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Special features of the optical-vortex (OV) beams generated by thick holographic elements (HE) with embedded phase singularity are considered theoretically. The volume HE structure is based on the 3D pattern of interference between an OV beam and a standard reference wave with regular wavefront. The incident beam diffraction is described within the framework of a linear single-scattering model in which the volume HE is represented by a set of parallel thin layers with the fork holographic structure. An explicit integral expression is derived for the complex amplitude distribution of the diffracted paraxial beam with OV. The numerical analysis demonstrates that the HE thickness may essentially influence not only selectivity and efficiency of the OV beam generation but also the amplitude and phase profile of the diffracted beam as well as regularities of its propagation. We have studied the generated OV morphology and laws of its evolution; in particular, the possibility of obtaining a circularly symmetric OV beam regardless of the diffraction angle is revealed.



rate research

Read More

Spatial characteristics of diffracted beams produced by a fork hologram from an incident circular Laguerre-Gaussian beam whose axis differ from the hologram optical axis are studied theoretically. General analytical representations for the complex amplitude distribution of a diffracted beam are derived in terms of superposition of Kummer beams or hypergeometric-Gaussian beams. The diffracted beam structure is determined by combination of the proper topological charge m of the incident vortex beam and the topological charge l of the singularity imparted by the hologram. Evolution of the diffracted beam structure is studied in detail for several combinations of m and l and for various incident beam displacements with respect to the optical axis of the hologram. Variations of the intensity and phase distribution due to the incident beam misalignment are investigated and possible applications for the purposeful optical-vortex beam generation and optical measurements are discussed.
The formulation of the interaction of matter with singular light fields needs special care. In a recent article [Phys.~Rev.~A {bf 91}, 033808 (2015)] we have shown that the Hamiltonian describing the interaction of a twisted light beam having parallel orbital and spin angular momenta with a small object located close to the phase singularity can be expressed only in terms of the electric field of the beam. Here, we complement our studies by providing an interaction Hamiltonian for beams having antiparallel orbital and spin angular momenta. Such beams may exhibit unusually strong magnetic effects. We further extend our formulation to radially and azimuthally polarized beams. The advantages of our formulation are that for all beams the Hamiltonian is written solely in terms of the electric and magnetic fields of the beam and as such it is manifestly gauge-invariant. Furthermore it is intuitive by resembling the well-known expressions in the dipole-electric and dipole-magnetic moment approximations.
Based on the Kirchhoff-Fresnel approximation, we numerically analyze spatial characteristics of the light field formed after a circular Laguerre-Gaussian beam with a single-charged optical vortex (OV) passes the transparent screen with a rectilinear phase step. The main attention is paid to the localization and interactions of the OVs, which form the singular skeleton of the transformed field. The phase-step influence depends on its value and position with respect to the beam axis. Upon weak perturbation (low phase step) the main effect is that the OV is shifted from the initial axial position and describes a closed loop when the phase step is monotonously translated across the beam. The strong perturbation (the phase step is close to pi) induces topological reactions with emergence and annihilation of additional singularities in the near-axial region of the diffracted beam cross section. These features are interpreted based on the 3D OV trajectories that show an intricate behavior with kinks and retrograde segments. The details of the OV migration and singular skeleton transformations reveal the fundamental helical nature and transverse energy circulation in the OV beams. The numerical results obtained in this paper show possibilities for the purposeful control of the singular skeleton characteristics within the transformed beam, and can be useful for the OV diagnostics, OV metrology and micromanipulation techniques.
Singular light beams with optical vortices (OV) are often generated by means of thin binary gratings with groove bifurcation (fork holograms) that produce a set of diffracted beams with different OV charges. Usually, only single separate beams are used and investigated; here we consider the whole set of diffracted OV beams that, at certain conditions, are involved in efficient mutual interference to form a characteristic pattern where the ring-like structure of separate OV beams is replaced by series of bright and dark lines between adjacent diffraction orders. This pattern, well developed for high diffraction orders, reflects the main spatial properties of the diffracted beams as well as of the fork grating used for their generation. In particular, it confirms the theoretical model for the diffracted beams (Kummer beam model) and enables to determine the sign and the absolute value of the phase singularity embedded in the hologram.
Perfect vortex beams are the orbital angular momentum (OAM)-carrying beams with fixed annular intensities, which provide a better source of OAM than traditional Laguerre- Gaussian beams. However, ordinary schemes to obtain the perfect vortex beams are usually bulky and unstable. We demonstrate here a novel generation scheme by designing planar Pancharatnam-Berry (PB) phase elements to replace all the elements required. Different from the conventional approaches based on reflective or refractive elements, PB phase elements can dramatically reduce the occupying volume of system. Moreover, the PB phase element scheme is easily developed to produce the perfect vector beams. Therefore, our scheme may provide prominent vortex and vector sources for integrated optical communication and micromanipulation systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا