No Arabic abstract
Unification of Randall-Sundrum and Regge-Teitelboim brane cosmologies gives birth to a serendipitous Higgs-deSitter interplay. A localized Dvali-Gabadadze-Porrati scalar field, governed by a particular (analytically derived) double-well quartic potential, becomes a mandatory ingredient for supporting a deSitter brane universe. When upgraded to a general Higgs potential, the brane surface tension gets quantized, resembling a Hydrogen atom spectrum, with deSitter universe serving as the ground state. This reflects the local/global structure of the Euclidean manifold: From finite energy density no-boundary initial conditions, via a novel acceleration divide filter, to exact matching conditions at the exclusive nucleation point. Imaginary time periodicity comes as a bonus, with the associated Hawking temperature vanishing at the continuum limit. Upon spontaneous creation, while a finite number of levels describe universes dominated by a residual dark energy combined with damped matter oscillations, an infinite tower of excited levels undergo a Big Crunch.
In this article, we study a type of one-field approach for open inflationary universe scenario in the context of braneworld models with a Gauss-Bonnet correction term. For a one-bubble universe model, we determine and characterize the existence of the Coleman-De Lucia instanton together with the period of inflation after tunneling has occurred. Our results are compared those analogous obtained when the usual Einstein Theory of Gravitation is used.
Quantum gravity of a brane-like Universe is formulated, and its Einstein limit is approached. Regge-Teitelboim embedding of Arnowitt-Deser-Misner formalism is carried out. Invoking a novel Lagrange multiplier, accompanying the lapse function and the shift vector, we derive the quadratic Hamiltonian and the corresponding bifurcated Wheeler-Dewitt-like equation. The inclusion of arbitrary matter resembles minimal coupling.
We consider spatially homogeneous and isotropic cosmologies with non-zero torsion. Given the high symmetry of these universes, we adopt a specific form for the torsion tensor that preserves the homogeneity and isotropy of the spatial surfaces. Employing both covariant and metric-based techniques, we derive the torsion
In classical General Relativity, the values of fields on spacetime are uniquely determined by their values at an initial time within the domain of dependence of this initial data surface. However, it may occur that the spacetime under consideration extends beyond this domain of dependence, and fields, therefore, are not entirely determined by their initial data. This occurs, for example, in the well-known (maximally) extended Reissner-Nordstrom or Reissner-Nordstrom-deSitter (RNdS) spacetimes. The boundary of the region determined by the initial data is called the Cauchy horizon. It is located inside the black hole in these spacetimes. The strong cosmic censorship conjecture asserts that the Cauchy horizon does not, in fact, exist in practice because the slightest perturbation (of the metric itself or the matter fields) will become singular there in a sufficiently catastrophic way that solutions cannot be extended beyond the Cauchy horizon. Thus, if strong cosmic censorship holds, the Cauchy horizon will be converted into a final singularity, and determinism will hold. Recently, however, it has been found that, classically this is not the case in RNdS spacetimes in a certain range of mass, charge, and cosmological constant. In this paper, we consider a quantum scalar field in RNdS spacetime and show that quantum theory comes to the rescue of strong cosmic censorship. We find that for any state that is nonsingular (i.e., Hadamard) within the domain of dependence, the expected stress-tensor blows up with affine parameter, $V$, along a radial null geodesic transverse to the Cauchy horizon as $T_{VV} sim C/V^2$ with $C$ independent of the state and $C eq 0$ generically in RNdS spacetimes. This divergence is stronger than in the classical theory and should be sufficient to convert the Cauchy horizon into a strong curvature singularity.
We study the spontaneously induced general relativity (GR) from the scalar-tensor gravity. We demonstrate by numerical methods that a novel inner core can be connected to the Schwarzschild exterior with cosmological constants and any sectional curvature. Deriving an analytic core metric for a general exterior, we show that all the nontrivial features of the core, including the locally holographic entropy packing, are universal for the general exterior in static spacetimes. We also investigate whether the f(R) gravity can accommodate the nontrivial core.