Do you want to publish a course? Click here

A Labelling Framework for Probabilistic Argumentation

76   0   0.0 ( 0 )
 Added by Regis Riveret
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

The combination of argumentation and probability paves the way to new accounts of qualitative and quantitative uncertainty, thereby offering new theoretical and applicative opportunities. Due to a variety of interests, probabilistic argumentation is approached in the literature with different frameworks, pertaining to structured and abstract argumentation, and with respect to diverse types of uncertainty, in particular the uncertainty on the credibility of the premises, the uncertainty about which arguments to consider, and the uncertainty on the acceptance status of arguments or statements. Towards a general framework for probabilistic argumentation, we investigate a labelling-oriented framework encompassing a basic setting for rule-based argumentation and its (semi-) abstract account, along with diverse types of uncertainty. Our framework provides a systematic treatment of various kinds of uncertainty and of their relationships and allows us to back or question assertions from the literature.



rate research

Read More

We study the extent to which we can infer users geographical locations from social media. Location inference from social media can benefit many applications, such as disaster management, targeted advertising, and news content tailoring. The challenges, however, lie in the limited amount of labeled data and the large scale of social networks. In this paper, we formalize the problem of inferring location from social media into a semi-supervised factor graph model (SSFGM). The model provides a probabilistic framework in which various sources of information (e.g., content and social network) can be combined together. We design a two-layer neural network to learn feature representations, and incorporate the learned latent features into SSFGM. To deal with the large-scale problem, we propose a Two-Chain Sampling (TCS) algorithm to learn SSFGM. The algorithm achieves a good trade-off between accuracy and efficiency. Experiments on Twitter and Weibo show that the proposed TCS algorithm for SSFGM can substantially improve the inference accuracy over several state-of-the-art methods. More importantly, TCS achieves over 100x speedup comparing with traditional propagation-based methods (e.g., loopy belief propagation).
Reasoning on large and complex real-world models is a computationally difficult task, yet one that is required for effective use of many AI applications. A plethora of inference algorithms have been developed that work well on specific models or only on parts of general models. Consequently, a system that can intelligently apply these inference algorithms to different parts of a model for fast reasoning is highly desirable. We introduce a new framework called structured factored inference (SFI) that provides the foundation for such a system. Using models encoded in a probabilistic programming language, SFI provides a sound means to decompose a model into sub-models, apply an inference algorithm to each sub-model, and combine the resulting information to answer a query. Our results show that SFI is nearly as accurate as exact inference yet retains the benefits of approximate inference methods.
In many real-life situations that involve exchanges of arguments, individuals may differ on their assessment of which supports between the arguments are in fact justified, i.e., they put forward different support-relations. When confronted with such situations, we may wish to aggregate individuals argumentation views on support-relations into a collective view, which is acceptable to the group. In this paper, we assume that under bipolar argumentation frameworks, individuals are equipped with a set of arguments and a set of attacks between arguments, but with possibly different support-relations. Using the methodology in social choice theory, we analyze what semantic properties of bipolar argumentation frameworks can be preserved by aggregation rules during the aggregation of support-relations.
This paper presents Co-Arg, a new type of cognitive assistant to an intelligence analyst that enables the synergistic integration of analyst imagination and expertise, computer knowledge and critical reasoning, and crowd wisdom, to draw defensible and persuasive conclusions from masses of evidence of all types, in a world that is changing all the time. Co-Args goal is to improve the quality of the analytic results and enhance their understandability for both experts and novices. The performed analysis is based on a sound and transparent argumentation that links evidence to conclusions in a way that shows very clearly how the conclusions have been reached, what evidence was used and how, what is not known, and what assumptions have been made. The analytic results are presented in a report describes the analytic conclusion and its probability, the main favoring and disfavoring arguments, the justification of the key judgments and assumptions, and the missing information that might increase the accuracy of the solution.
We develop a probabilistic framework for deep learning based on the Deep Rendering Mixture Model (DRMM), a new generative probabilistic model that explicitly capture variations in data due to latent task nuisance variables. We demonstrate that max-sum inference in the DRMM yields an algorithm that exactly reproduces the operations in deep convolutional neural networks (DCNs), providing a first principles derivation. Our framework provides new insights into the successes and shortcomings of DCNs as well as a principled route to their improvement. DRMM training via the Expectation-Maximization (EM) algorithm is a powerful alternative to DCN back-propagation, and initial training results are promising. Classification based on the DRMM and other variants outperforms DCNs in supervised digit classification, training 2-3x faster while achieving similar accuracy. Moreover, the DRMM is applicable to semi-supervised and unsupervised learning tasks, achieving results that are state-of-the-art in several categories on the MNIST benchmark and comparable to state of the art on the CIFAR10 benchmark.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا