No Arabic abstract
We report on VLBI measurements of supernova 2014C at several epochs between $t = 384$ and 1057 days after the explosion. SN 2014C was an unusual supernova that initially had Type Ib optical spectrum, but after $t = 130$ d it developed a Type IIn spectrum with prominent H$alpha$ lines, suggesting the onset of strong circumstellar interaction. Our first VLBI observation was at $t = 384$ d, and we find that the outer radius of SN 2014C was $(6.40 pm 0.26) times 10^{16}$ cm (for a distance of 15.1 Mpc), implying an average expansion velocity of $19300 pm 790$ kms up to that time. At our last epoch, SN 2014C was moderately resolved and shows an approximately circular outline but with an enhancement of the brightness on the W side. The outer radius of the radio emission at $t = 1057$ d is $(14.9 pm 0.6) times 10^{16}$ cm. We find that the expansion between $t = 384$ and 1057 d is well described by a constant velocity expansion with $v = 13600 pm 650$ kms. SN 2014C had clearly been substantially decelerated by $t = 384$ d. Our measurements are compatible with a scenario where the expanding shock impacted upon a shell of dense circumstellar material during the first year, as suggested by the observations at other wavelengths, but had progressed through the dense shell by the time of the VLBI observations.
We report on new Very Long Baseline Interferometry radio measurements of supernova 2014C in the spiral galaxy NGC 7331, made with the European VLBI Network ~5 yr after the explosion, as well as on flux density measurements made with the Jansky Very Large Array (VLA). SN 2014C was an unusual supernova, initially of Type Ib, but over the course of ~1 yr it developed strong H$alpha$ lines, implying the onset of strong interaction with some H-rich circumstellar medium (CSM). The expanding shock-front interacted with a dense shell of circumstellar material during the first year, but has now emerged from the dense shell and is expanding into the lower density CSM beyond. Our new VLBI observations show a relatively clear shell structure and continued expansion with some deceleration, with a suggestion that the deceleration is increasing at the latest times. Our multi-frequency VLA observations show a relatively flat powerlaw spectrum with $S_ u propto u^{-0.56 pm 0.03}$, and show no decline in the radio luminosity since $tsim1$ yr.
We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor stars stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf-Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Halpha absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30 - 300 Myr, and favor ages closer to 30 Myr in light of relatively strong Halpha emission. SN 2014C is the best-observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution.
The recent study of SN 2013fs flash spectrum suggests enormous for SN IIP explosion energy, far beyond possibilities of the neutrino mechanism. The issue of the explosion energy of SN 2013fs is revisited making use of effects of the early supernova interaction with the dense circumstellar shell. The velocity of the cold dense shell between reverse and forward shocks is inferred from the analysis of the broad heii,4686,AA on day 2.4. This velocity alongside with other observables provide us with an alternative energy estimate of $sim1.8times10^{51}$,erg for the preferred mass of $sim10$msun. The inferred value is within the range of the neutrino driven explosion.
Supernova (SN) 2014C is a unique explosion where a seemingly typical hydrogen-poor stripped envelope SN started to interact with a dense, hydrogen-rich circumstellar medium (CSM) a few months after the explosion. The delayed interaction suggests a detached CSM shell, unlike in a typical SN IIn where the CSM is much closer and the interaction commences earlier post-explosion; indicating a different mass loss history. We present near- to mid-infrared observations of SN 2014C from 1-5 years after the explosion, including uncommon 9.7 $mu$m imaging with COMICS on the Subaru telescope. Spectroscopy shows that the interaction is still ongoing, with the intermediate-width He I 1.083 $mu$m emission present out to our latest epoch 1639 days post-explosion. The last Spitzer/IRAC photometry at 1920 days post-explosion further confirms ongoing CSM interaction. The 1-10 $mu$m spectral energy distributions (SEDs) can be explained by a dust model with a mixture of 69% carbonaceous and 31% silicate dust, pointing to a chemically inhomogeneous CSM. The inference of silicate dust is the first among interacting SNe. An SED model with purely carbonaceous CSM dust is possible, but would require more than 0.22 $M_{odot}$ of dust, which is an order of magnitude larger than what observed in any other SNe, measured in the same way, at this epoch. The light curve beyond 500 days is well fit by an interaction model with a wind-driven CSM and a mass loss rate of $sim 10^{-3} , M_{odot},rm yr^{-1}$, which presents an additional CSM density component exterior to the constant density shell reported previously in the literature. SN 2014C could originate in a binary system, similar to RY Scuti, which would explain the observed chemical and density profile inhomogeneity in the CSM.
We report optical and near-infrared observations of SN 2012ca with the Public ESO Spectroscopy Survey of Transient Objects (PESSTO), spread over one year since discovery. The supernova (SN) bears many similarities to SN 1997cy and to other events classified as Type IIn but which have been suggested to have a thermonuclear origin with narrow hydrogen lines produced when the ejecta impact a hydrogen-rich circumstellar medium (CSM). Our analysis, especially in the nebular phase, reveals the presence of oxygen, magnesium and carbon features. This suggests a core collapse explanation for SN2012ca, in contrast to the thermonuclear interpretation proposed for some members of this group. We suggest that the data can be explained with a hydrogen and helium deficient SN ejecta (Type I) interacting with a hydrogen-rich CSM, but that the explosion was more likely a Type Ic core-collapse explosion than a Type Ia thermonuclear one. This suggests two channels (both thermonuclear and stripped envelope core-collapse) may be responsible for these SN 1997cy-like events.