No Arabic abstract
We present optical observations of supernova SN 2014C, which underwent an unprecedented slow metamorphosis from H-poor type Ib to H-rich type IIn over the course of one year. The observed spectroscopic evolution is consistent with the supernova having exploded in a cavity before encountering a massive shell of the progenitor stars stripped hydrogen envelope. Possible origins for the circumstellar shell include a brief Wolf-Rayet fast wind phase that overtook a slower red supergiant wind, eruptive ejection, or confinement of circumstellar material by external influences of neighboring stars. An extended high velocity Halpha absorption feature seen in near-maximum light spectra implies that the progenitor star was not completely stripped of hydrogen at the time of core collapse. Archival pre-explosion Subaru Telescope Suprime-Cam and Hubble Space Telescope Wide Field Planetary Camera 2 images of the region obtained in 2009 show a coincident source that is most likely a compact massive star cluster in NGC 7331 that hosted the progenitor system. By comparing the emission properties of the source with stellar population models that incorporate interacting binary stars we estimate the age of the host cluster to be 30 - 300 Myr, and favor ages closer to 30 Myr in light of relatively strong Halpha emission. SN 2014C is the best-observed member of a class of core-collapse supernovae that fill the gap between events that interact strongly with dense, nearby environments immediately after explosion and those that never show signs of interaction. Better understanding of the frequency and nature of this intermediate population can contribute valuable information about the poorly understood final stages of stellar evolution.
We report on VLBI measurements of supernova 2014C at several epochs between $t = 384$ and 1057 days after the explosion. SN 2014C was an unusual supernova that initially had Type Ib optical spectrum, but after $t = 130$ d it developed a Type IIn spectrum with prominent H$alpha$ lines, suggesting the onset of strong circumstellar interaction. Our first VLBI observation was at $t = 384$ d, and we find that the outer radius of SN 2014C was $(6.40 pm 0.26) times 10^{16}$ cm (for a distance of 15.1 Mpc), implying an average expansion velocity of $19300 pm 790$ kms up to that time. At our last epoch, SN 2014C was moderately resolved and shows an approximately circular outline but with an enhancement of the brightness on the W side. The outer radius of the radio emission at $t = 1057$ d is $(14.9 pm 0.6) times 10^{16}$ cm. We find that the expansion between $t = 384$ and 1057 d is well described by a constant velocity expansion with $v = 13600 pm 650$ kms. SN 2014C had clearly been substantially decelerated by $t = 384$ d. Our measurements are compatible with a scenario where the expanding shock impacted upon a shell of dense circumstellar material during the first year, as suggested by the observations at other wavelengths, but had progressed through the dense shell by the time of the VLBI observations.
We present a study of optical and near-infrared (NIR) spectra along with the light curves of SN 2013ai. These data range from discovery until 380 days after explosion. SN 2013ai is a fast declining type II supernova (SN II) with an unusually long rise time; $18.9pm2.7$d in $V$ band and a bright $V$ band peak absolute magnitude of $-18.7pm0.06$ mag. The spectra are dominated by hydrogen features in the optical and NIR. The spectral features of SN 2013ai are unique in their expansion velocities, which when compared to large samples of SNe II are more than 1,000 kms faster at 50 days past explosion. In addition, the long rise time of the light curve more closely resembles SNe IIb rather than SNe II. If SN 2013ai is coeval with a nearby compact cluster we infer a progenitor ZAMS mass of $sim$17 M$_odot$. After performing light curve modeling we find that SN 2013ai could be the result of the explosion of a star with little hydrogen mass, a large amount of synthesized $^{56}$Ni, 0.3-0.4 M$_odot$, and an explosion energy of $2.5-3.0times10^{51}$ ergs. The density structure and expansion velocities of SN 2013ai are similar to that of the prototypical SN IIb, SN 1993J. However, SN 2013ai shows no strong helium features in the optical, likely due to the presence of a dense core that prevents the majority of $gamma$-rays from escaping to excite helium. Our analysis suggests that SN 2013ai could be a link between SNe II and stripped envelope SNe.
We present a seven-minute long $4pi$-3D simulation of a shell merger event in a non-rotating $18.88, M_odot$ supernova progenitor before the onset of gravitational collapse. The key motivation is to capture the large-scale mixing and asymmetries in the wake of the shell merger before collapse using a self-consistent approach. The $4pi$ geometry is crucial as it allows us to follow the growth and evolution of convective modes on the largest possible scales. We find significant differences between the kinematic, thermodynamic and chemical evolution of the 3D and the 1D model. The 3D model shows vigorous convection leading to more efficient mixing of nuclear species. In the 3D case the entire oxygen shell attains convective Mach numbers of $mathord{approx}, 0.1$, whereas in the 1D model, the convective velocities are much lower and there is negligible overshooting across convective boundaries. In the 3D case, the convective eddies entrain nuclear species from the neon (and carbon) layers into the deeper part of the oxygen burning shell, where they burn and power a violent convection phase with outflows. This is a prototypical model of a convective-reactive system. Due to the strong convection and the resulting efficient mixing, the interface between the neon layer and the silicon-enriched oxygen layer disappears during the evolution, and silicon is mixed far out into merged oxygen/neon shell. Neon entrained inwards by convective downdrafts burns, resulting in lower neon mass in the 3D model compared to the 1D model at time of collapse. In addition, the 3D model develops remarkable large-scale, large-amplitude asymmetries, which may have important implications for the impending gravitational collapse and the subsequent explosion.
We report on new Very Long Baseline Interferometry radio measurements of supernova 2014C in the spiral galaxy NGC 7331, made with the European VLBI Network ~5 yr after the explosion, as well as on flux density measurements made with the Jansky Very Large Array (VLA). SN 2014C was an unusual supernova, initially of Type Ib, but over the course of ~1 yr it developed strong H$alpha$ lines, implying the onset of strong interaction with some H-rich circumstellar medium (CSM). The expanding shock-front interacted with a dense shell of circumstellar material during the first year, but has now emerged from the dense shell and is expanding into the lower density CSM beyond. Our new VLBI observations show a relatively clear shell structure and continued expansion with some deceleration, with a suggestion that the deceleration is increasing at the latest times. Our multi-frequency VLA observations show a relatively flat powerlaw spectrum with $S_ u propto u^{-0.56 pm 0.03}$, and show no decline in the radio luminosity since $tsim1$ yr.
SN 2018hti is a Type I superluminous supernova (SLSN~I) with an absolute $g$-band magnitude of $-22.2$ at maximum brightness, discovered in a metal-poor galaxy at a redshift of 0.0612. We present extensive photometric and spectroscopic observations of this supernova, covering the phases from $sim -35$ days to more than +340 days from the $r$-band maximum. Combining our $BVgri$-band photometry with {it Swift} UVOT optical/ultraviolet photometry, we calculated the peak luminosity as $sim 3.5times10^{44}$ erg s$^{-1}$. Modeling the observed light curve reveals that the luminosity evolution of SN 2018hti can be produced by an ejecta mass of 5.8 $M_odot$ and a magnetar with a magnetic field of $B=1.8times10^{13}$~G having an initial spin period of $P_0=1.8$ ms. Based on such a magnetar-powered scenario and a larger sample, a correlation between the spin of the magnetar and the kinetic energy of the ejecta can be inferred for most SLSNe~I, suggesting a self-consistent scenario. Like for other SLSNe~I, the host galaxy of SN 2018hti is found to be relatively faint ($M_{g} = -17.75$ mag) and of low metallicity ($Z=0.3~Z_odot$), with a star-formation rate of 0.3 $M_odot$ yr$^{-1}$. According to simulation results of single-star evolution, SN 2018hti could originate from a massive, metal-poor star with a zero-age main sequence (ZAMS) mass of 25--40 $M_odot$, or from a less massive rotating star with $M_mathrm{ZAMS} approx 16$--25 $M_odot$. For the case of a binary system, its progenitor could also be a star with $M_mathrm{ZAMS} gtrsim 25$ $M_odot$.