No Arabic abstract
We generalize the notion of planar bicycle tracks -- a.k.a. one-trailer systems -- to so-called tractor/tractrix systems in general Riemannian manifolds and prove explicit expressions for the length of the ensuing tractrices and for the area of the domains that are swept out by any given tractor/tractrix system. These expressions are sensitive to the curvatures of the ambient Riemannian manifold, and we prove explicit estimates for them based on Rauchs and Toponogovs comparison theorems. Moreover, the general length shortening property of tractor/tractrix systems is used to generate geodesics in homotopy classes of curves in the ambient manifold.
A {em 2-Riemannian manifold} is a differentiable manifold exhibiting a 2-inner product on each tangent space. We first study lower dimensional 2-Riemannian manifolds by giving necessary and sufficient conditions for flatness. Afterward we associate to each 2-Riemannian manifold a unique torsion free compatible pseudoconnection. Using it we define a curvature for 2-Riemannian manifolds and study its properties. We also prove that 2-Riemannian pseudoconnections do not have Koszul derivatives. Moreover, we define stationary vector field with respect to a 2-Riemannian metric and prove that the stationary vector fields in $mathbb{R}^2$ with respect to the 2-Riemannian metric induced by the Euclidean product are the divergence free ones.
Flag manifolds are in general not symmetric spaces. But they are provided with a structure of $mathbb{Z}_2^k$-symmetric space. We describe the Riemannian metrics adapted to this structure and some properties of reducibility. We detail for the flag manifold $SO(5)/SO(2)times SO(2) times SO(1)$ what are the conditions for a metric adapted to the $mathbb{Z}_2^2$-symmetric structure to be naturally reductive.
We quantify conditions that ensure that a signed measure on a Riemannian manifold has a well defined centre of mass. We then use this result to quantify the extent of a neighbourhood on which the Riemannian barycentric coordinates of a set of $n+1$ points on an $n$-manifold provide a true coordinate chart, i.e., the barycentric coordinates provide a diffeomorphism between a neighbourhood of a Euclidean simplex, and a neighbourhood containing the points on the manifold.
We study compact Riemannian manifolds for which the light between any pair of points is blocked by finitely many point shades. Compact flat Riemannian manifolds are known to have this finite blocking property. We conjecture that amongst compact Riemannian manifolds this finite blocking property characterizes the flat metrics. Using entropy considerations, we verify this conjecture amongst metrics with nonpositive sectional curvatures. Using the same approach, K. Burns and E. Gutkin have independently obtained this result. Additionally, we show that compact quotients of Euclidean buildings have the finite blocking property. On the positive curvature side, we conjecture that compact Riemannian manifolds with the same blocking properties as compact rank one symmetric spaces are necessarily isometric to a compact rank one symmetric space. We include some results providing evidence for this conjecture.
We describe all affine maps from a Riemannian manifold to a metric space and all possible image spaces.