Do you want to publish a course? Click here

Magnetic Field Inducing Zeeman Splitting and Anomalous Conductance Reduction of Half-integer Quantized Plateaus in InAs Quantum Wires

112   0   0.0 ( 0 )
 Added by Sadashige Matsuo
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report on magnetic field dependence of half-integer quantized conductance plateaus (HQPs) in InAs quantum wires. We observed HQPs at zero applied magnetic field in InAs quantum wires fabricated from a high-quality InAs quantum well. The application of in-plane magnetic field causes Zeeman splitting of the HQP features, indicating that the origin of the observed HQP is not spontaneous spin polarization. Additionally we observe that conductance of the split HQPs decreases gradually as the in-plane magnetic field increases. We finally assume electron-electron interaction as a possible mechanism to account for the zero-field HQPs and the anomalous field dependence.



rate research

Read More

We have studied the Zeeman splitting in ballistic hole quantum wires formed in a (311)A quantum well by surface gate confinement. Transport measurements clearly show lifting of the spin degeneracy and crossings of the subbands when an in-plane magnetic field B is applied parallel to the wire. When B is oriented perpendicular to the wire, no spin-splitting is discernible up to B = 8.8 T. The observed large Zeeman splitting anisotropy in our hole quantum wires demonstrates the importance of quantum-confinement for spin-splitting in nanostructures with strong spin-orbit coupling.
A weak superconducting proximity effect in the vicinity of the topological transition of a quantum anomalous Hall system has been proposed as a venue to realize a topological superconductor (TSC) with chiral Majorana edge modes (CMEMs). A recent experiment [Science 357, 294 (2017)] claimed to have observed such CMEMs in the form of a half-integer quantized conductance plateau in the two-terminal transport measurement of a quantum anomalous Hall-superconductor junction. Although the presence of a superconducting proximity effect generically splits the quantum Hall transition into two phase transitions with a gapped TSC in between, in this Rapid Communication we propose that a nearly flat conductance plateau, similar to that expected from CMEMs, can also arise from the percolation of quantum Hall edges well before the onset of the TSC or at temperatures much above the TSC gap. Our Rapid Communication, therefore, suggests that, in order to confirm the TSC, it is necessary to supplement the observation of the half-quantized conductance plateau with a hard superconducting gap (which is unlikely for a disordered system) from the conductance measurements or the heat transport measurement of the transport gap. Alternatively, the half-quantized thermal conductance would also serve as a smoking-gun signature of the TSC.
109 - A. Tarasov , S. Hugger , Hengyi Xu 2009
Ballistic quantum wires are exposed to longitudinal profiles of perpendicular magnetic fields composed of a spike (magnetic barrier) and a homogeneous part. An asymmetric magnetoconductance peak as a function of the homogeneous magnetic field is found, comprising quantized conductance steps in the interval where the homogeneous magnetic field and the magnetic barrier have identical polarities, and a characteristic shoulder with several resonances in the interval of opposite polarities. The observations are interpreted in terms of inhomogeneous diamagnetic shifts of the quantum wire modes leading to magnetic confinement.
We study non-equilibrium differential conductance and current fluctuations in a single quantum point contact. The two-terminal electrical transport properties -- differential conductance and shot noise -- are measured at 1.5 K as a function of the drain-source voltage and the Schottky split-gate voltage. In differential conductance measurements, conductance plateaus appear at integer multiples of $2e^2/h$ when the drain-source voltage is small, and the plateaus evolve to a fractional of $2e^2/h$ as the drain-source voltage increases. Our shot noise measurements correspondingly show that the shot noise signal is highly suppressed at both the integer and the non-integer conductance plateaus. This main feature can be understood by the induced electrostatic potential model within a single electron picture. In addition, we observe the 0.7 structure in the differential conductance and the suppressed shot noise around 0.7 ($2e^2/h$); however, the previous single-electron model cannot explain the 0.7 structure and the noise suppression, suggesting that this characteristic relates to the electron-electron interactions.
A quantum anomalous Hall (QAH) insulator coupled to an s-wave superconductor is predicted to harbor a topological superconducting phase, the elementary excitations of which (i.e. Majorana fermions) can form topological qubits upon non-Abelian braiding operations. A recent transport experiment interprets the half-quantized two-terminal conductance plateau as the presence of chiral Majorana fermions in a millimeter-size QAH-Nb hybrid structure. However, there are concerns about this interpretation because non-Majorana mechanisms can also generate similar signatures, especially in a disordered QAH system. Here, we fabricated QAH-Nb hybrid structures and studied the QAH-Nb contact transparency and its effect on the corresponding two-terminal conductance. When the QAH film is tuned to the metallic regime by electric gating, we observed a sharp zero-bias enhancement in the differential conductance, up to 80% at zero magnetic field. This large enhancement suggests high probability of Andreev reflection and transparent interface between the magnetic topological insulator (TI) and Nb layers. When the magnetic TI film is in the QAH state with well-aligned magnetization, we found that the two-terminal conductance is always half-quantized. Our experiment provides a comprehensive understanding of the superconducting proximity effect observed in QAH-superconductor hybrid structures and shows that the half-quantized conductance plateau is unlikely to be induced by chiral Majorana fermions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا