No Arabic abstract
The idea of counting the number of satisfying truth assignments (models) of a formula by adding random parity constraints can be traced back to the seminal work of Valiant and Vazirani, showing that NP is as easy as detecting unique solutions. While theoretically sound, the random parity constraints in that construction have the following drawback: each constraint, on average, involves half of all variables. As a result, the branching factor associated with searching for models that also satisfy the parity constraints quickly gets out of hand. In this work we prove that one can work with much shorter parity constraints and still get rigorous mathematical guarantees, especially when the number of models is large so that many constraints need to be added. Our work is based on the realization that the essential feature for random systems of parity constraints to be useful in probabilistic model counting is that the geometry of their set of solutions resembles an error-correcting code.
We present an algorithm to compute exact literal-weighted model counts of Boolean formulas in Conjunctive Normal Form. Our algorithm employs dynamic programming and uses Algebraic Decision Diagrams as the primary data structure. We implement this technique in ADDMC, a new model counter. We empirically evaluate various heuristics that can be used with ADDMC. We then compare ADDMC to state-of-the-art exact weighted model counters (Cachet, c2d, d4, and miniC2D) on 1914 standard model counting benchmarks and show that ADDMC significantly improves the virtual best solver.
We revisit the symbolic verification of Markov chains with respect to finite horizon reachability properties. The prevalent approach iteratively computes step-bounded state reachability probabilities. By contrast, recent advances in probabilistic inference suggest symbolically representing all horizon-length paths through the Markov chain. We ask whether this perspective advances the state-of-the-art in probabilistic model checking. First, we formally describe both approaches in order to highlight their key differences. Then, using these insights we develop Rubicon, a tool that transpiles Prism models to the probabilistic inference tool Dice. Finally, we demonstrate better scalability compared to probabilistic model checkers on selected benchmarks. All together, our results suggest that probabilistic inference is a valuable addition to the probabilistic model checking portfolio -- with Rubicon as a first step towards integrating both perspectives.
Probabilistic timed automata are an extension of timed automata with discrete probability distributions. We consider model-checking algorithms for the subclasses of probabilistic timed automata which have one or two clocks. Firstly, we show that PCTL probabilistic model-checking problems (such as determining whether a set of target states can be reached with probability at least 0.99 regardless of how nondeterminism is resolved) are PTIME-complete for one-clock probabilistic timed automata, and are EXPTIME-complete for probabilistic timed automata with two clocks. Secondly, we show that, for one-clock probabilistic timed automata, the model-checking problem for the probabilistic timed temporal logic PCTL is EXPTIME-complete. However, the model-checking problem for the subclass of PCTL which does not permit both punctual timing bounds, which require the occurrence of an event at an exact time point, and comparisons with probability bounds other than 0 or 1, is PTIME-complete for one-clock probabilistic timed automata.
We study the problem of formalizing and checking probabilistic hyperproperties for models that allow nondeterminism in actions. We extend the temporal logic HyperPCTL, which has been previously introduced for discrete-time Markov chains, to enable the specification of hyperproperties also for Markov decision processes. We generalize HyperPCTL by allowing explicit and simultaneous quantification over schedulers and probabilistic computation trees and show that it can express important quantitative requirements in security and privacy. We show that HyperPCTL model checking over MDPs is in general undecidable for quantification over probabilistic schedulers with memory, but restricting the domain to memoryless non-probabilistic schedulers turns the model checking problem decidable. Subsequently, we propose an SMT-based encoding for model checking this language and evaluate its performance.
Binary decision diagrams can compactly represent vast sets of states, mitigating the state space explosion problem in model checking. Probabilistic systems, however, require multi-terminal diagrams storing rational numbers. They are inefficient for models with many distinct probabilities and for iterative numeric algorithms like value iteration. In this paper, we present a new symblicit approach to checking Markov chains and related probabilistic models: We first generate a decision diagram that symbolically collects all reachable states and their predecessors. We then concretise states one-by-one into an explicit partial state space representation. Whenever all predecessors of a state have been concretised, we eliminate it from the explicit state space in a way that preserves all relevant probabilities and rewards. We thus keep few explicit states in memory at any time. Experiments show that very large models can be model-checked in this way with very low memory consumption.