Do you want to publish a course? Click here

Symblicit Exploration and Elimination for Probabilistic Model Checking

76   0   0.0 ( 0 )
 Added by Ernst Moritz Hahn
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Binary decision diagrams can compactly represent vast sets of states, mitigating the state space explosion problem in model checking. Probabilistic systems, however, require multi-terminal diagrams storing rational numbers. They are inefficient for models with many distinct probabilities and for iterative numeric algorithms like value iteration. In this paper, we present a new symblicit approach to checking Markov chains and related probabilistic models: We first generate a decision diagram that symbolically collects all reachable states and their predecessors. We then concretise states one-by-one into an explicit partial state space representation. Whenever all predecessors of a state have been concretised, we eliminate it from the explicit state space in a way that preserves all relevant probabilities and rewards. We thus keep few explicit states in memory at any time. Experiments show that very large models can be model-checked in this way with very low memory consumption.



rate research

Read More

In the design of probabilistic timed systems, bounded requirements concerning behaviour that occurs within a given time, energy, or more generally cost budget are of central importance. Traditionally, such requirements have been model-checked via a reduction to the unbounded case by unfolding the model according to the cost bound. This exacerbates the state space explosion problem and significantly increases runtime. In this paper, we present three new algorithms to model-check time- and cost-bounded properties for Markov decision processes and probabilistic timed automata that avoid unfolding. They are based on a modified value iteration process, on an enumeration of schedulers, and on state elimination techniques. We can now obtain results for any cost bound on a single state space no larger than for the corresponding unbounded or expected-value property. In particular, we can naturally compute the cumulative distribution function at no overhead. We evaluate the applicability and compare the performance of our new algorithms and their implementation on a number of case studies from the literature.
We revisit the symbolic verification of Markov chains with respect to finite horizon reachability properties. The prevalent approach iteratively computes step-bounded state reachability probabilities. By contrast, recent advances in probabilistic inference suggest symbolically representing all horizon-length paths through the Markov chain. We ask whether this perspective advances the state-of-the-art in probabilistic model checking. First, we formally describe both approaches in order to highlight their key differences. Then, using these insights we develop Rubicon, a tool that transpiles Prism models to the probabilistic inference tool Dice. Finally, we demonstrate better scalability compared to probabilistic model checkers on selected benchmarks. All together, our results suggest that probabilistic inference is a valuable addition to the probabilistic model checking portfolio -- with Rubicon as a first step towards integrating both perspectives.
Probabilistic timed automata are an extension of timed automata with discrete probability distributions. We consider model-checking algorithms for the subclasses of probabilistic timed automata which have one or two clocks. Firstly, we show that PCTL probabilistic model-checking problems (such as determining whether a set of target states can be reached with probability at least 0.99 regardless of how nondeterminism is resolved) are PTIME-complete for one-clock probabilistic timed automata, and are EXPTIME-complete for probabilistic timed automata with two clocks. Secondly, we show that, for one-clock probabilistic timed automata, the model-checking problem for the probabilistic timed temporal logic PCTL is EXPTIME-complete. However, the model-checking problem for the subclass of PCTL which does not permit both punctual timing bounds, which require the occurrence of an event at an exact time point, and comparisons with probability bounds other than 0 or 1, is PTIME-complete for one-clock probabilistic timed automata.
337 - Tianrong Lin 2014
In this paper, we settle a problem in probabilistic verification of infinite--state process (specifically, {it probabilistic pushdown process}). We show that model checking {it stateless probabilistic pushdown process} (pBPA) against {it probabilistic computational tree logic} (PCTL) is undecidable.
In this paper we investigate the applicability of standard model checking approaches to verifying properties in probabilistic programming. As the operational model for a standard probabilistic program is a potentially infinite parametric Markov decision process, no direct adaption of existing techniques is possible. Therefore, we propose an on-the-fly approach where the operational model is successively created and verified via a step-wise execution of the program. This approach enables to take key features of many probabilistic programs into account: nondeterminism and conditioning. We discuss the restrictions and demonstrate the scalability on several benchmarks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا