No Arabic abstract
We derive a closed expression for the vacuum expectation value (VEV) of the fermionic current density in a (D+1)-dimensional locally AdS spacetime with an arbitrary number of toroidally compactified Poincare spatial dimensions and in the presence of a constant gauge field. The latter can be formally interpreted in terms of a magnetic flux treading the compact dimensions. In the compact subspace, the field operator obeys quasiperiodicity conditions with arbitrary phases. The VEV of the charge density is zero and the current density has nonzero components along the compact dimensions only. They are periodic functions of the magnetic flux with the period equal to the flux quantum and tend to zero on the AdS boundary. Near the horizon, the effect of the background gravitational field is small and the leading term in the corresponding asymptotic expansion coincides with the VEV for a massless field in the locally Minkowski bulk. Unlike the Minkowskian case, in the system consisting an equal number of fermionic and scalar degrees of freedom, with same masses, charges and phases in the periodicity conditions, the total current density does not vanish. In these systems, the leading divergences in the scalar and fermionic contributions on the horizon are canceled and, as a consequence of that, the charge flux, integrated over the coordinate perpendicular to the AdS boundary, becomes finite. We show that in odd spacetime dimensions the fermionic fields realizing two inequivalent representations of the Clifford algebra and having equal phases in the periodicity conditions give the same contribution to the VEV of the current density. Combining the contributions from these fields, the current density in odd-dimensional C-,P- and T -symmetric models are obtained. As an application, we consider the ground state current density in curved carbon nanotubes.
We investigate the influence of a brane on the vacuum expectation value (VEV) of the current density for a charged fermionic field in background of locally AdS spacetime with an arbitrary number of toroidally compact dimensions and in the presence of a constant gauge field. Along compact dimensions the field operator obeys quasiperiodicity conditions with arbitrary phases and on the brane it is constrained by the bag boundary condition. The VEVs for the charge density and the components of the current density along uncompact dimensions vanish. The components along compact dimensions are decomposed into the brane-free and brane-induced contributions. The behavior of the latter in various asymptotic regions of the parameters is investigated. It particular, it is shown that the brane-induced contribution is mainly located near the brane and vanishes on the AdS boundary and on the horizon. An important feature is the finiteness of the current density on the brane. Applications are given to $Z_2$-symmetric braneworlds of the Randall-Sundrum type with compact dimensions for two classes of boundary conditions on the fermionic field. In the special case of three-dimensional spacetime, the corresponding results are applied for the investigation of the edge effects on the ground state current density induced in curved graphene tubes by an enclosed magnetic flux.
Many-body systems with chiral fermions exhibit anomalous transport phenomena originated from quantum anomalies. Based on quantum field theory, we derive the kinetic theory for chiral fermions interacting with an external electromagnetic field and a background curved geometry. The resultant framework respects the covariance under the U(1) gauge, local Lorentz, and diffeomorphic transformations. It is particularly useful to study the gravitational or non-inertial effects for chiral systems. As the first application, we study the chiral dynamics in a rotating coordinate and clarify the roles of the Coriolis force and spin-vorticity coupling in generating the chiral vortical effect (CVE). We also show that the CVE is an intrinsic phenomenon of a rotating chiral fluid, and thus independent of observers frame.
We investigate the effects of a brane and magnetic-flux-carrying cosmic string on the vacuum expectation value (VEV) of the current density for a charged fermionic field in the background geometry of 4+1 dimensional anti-de Sitter (AdS) spacetime. The brane is parallel to the AdS boundary and the cosmic string is orthogonal to the brane. Two types of boundary conditions are considered on the brane that include the MIT bag boundary condition and the boundary conditions in Z2-symmetric braneworld models. The brane divides the space into two regions with different properties of the vacuum state. The only nonzero component of the current density is along the azimuthal direction and in both the regions the corresponding VEV is decomposed into the brane-free and brane-induced contributions. The latter vanishes on the string and near the string the total current is dominated by the brane-free part. At large distances from the string and in the region between the brane and AdS horizon the decay of the brane-induced current density, as a function of the proper distance, is power-law for both massless and massive fields. For a massive field this behavior is essentially different from that in the Minkowski bulk. In the region between the brane and AdS boundary the large-distance decay of the current density is exponential. Depending on the boundary condition on the brane, the brane-induced contribution is dominant or subdominant in the total current density at large distances from the string. By using the results for fields realizing two inequivalent irreducible representations of the Clifford algebra, the vacuum current density is investigated in C- and P-symmetric fermionic models. Applications are given for a cosmic string in the Randall-Sundrum-type braneworld model with a single brane.
We investigate topological effects of a cosmic string and compactification of a spatial dimension on the vacuum expectation value (VEV) of the energy-momentum tensor for a fermionic field in (4+1)-dimensional locally AdS spacetime. The contribution induced by the compactification is explicitly extracted by using the Abel-Plana summation formula. The mean energy-momentum tensor is diagonal and the vacuum stresses along the direction perpendicular to the AdS boundary and along the cosmic string are equal to the energy density. All the components are even periodic functions of the magnetic fluxes inside the string core and enclosed by compact dimension, with the period equal to the flux quantum. The vacuum energy density can be either positive or negative, depending on the values of the parameters and the distance from the string. The topological contributions in the VEV of the energy-momentum tensor vanish on the AdS boundary. Near the string the effects of compactification and gravitational field are weak and the leading term in the asymptotic expansion coincides with the corresponding VEV in (4+1)-dimensional Minkowski spacetime. At large distances, the decay of the cosmic string induced contribution in the vacuum energy-momentum tensor, as a function of the proper distance from the string, follows a power law. For a cosmic string in the Minkowski bulk and for massive fields the corresponding fall off is exponential. Within the framework of the AdS/CFT correspondence, the geometry for conformal field theory on the AdS boundary corresponds to the standard cosmic string in (3+1)-dimensional Minkowski spacetime compactified along its axis.
We investigate the combined effects of boundaries and topology on the vacuum expectation values (VEVs) of the charge and current densities for a massive 2D fermionic field confined on a conical ring threaded by a magnetic flux. Different types of boundary conditions on the ring edges are considered for fields realizing two inequivalent irreducible representations of the Clifford algebra. The related bound states and zero energy fermionic modes are discussed. The edge contributions to the VEVs of the charge and azimuthal current densities are explicitly extracted and their behavior in various asymptotic limits is considered. On the ring edges the azimuthal current density is equal to the charge density or has an opposite sign. We show that the absolute values of the charge and current densities increase with increasing planar angle deficit. Depending on the boundary conditions, the VEVs are continuous or discontinuous at half-integer values of the ratio of the effective magnetic flux to the flux quantum. The discontinuity is related to the presence of the zero energy mode. By combining the results for the fields realizing the irreducible representations of the Clifford algebra, the charge and current densities are studied in parity and time-reversal symmetric fermionic models. If the boundary conditions and the phases in quasiperiodicity conditions for separate fields are the same the total charge density vanishes. Applications are given to graphitic cones with edges (conical ribbons).