Do you want to publish a course? Click here

Two-component Jaffe models with a central black hole. I: the spherical case

64   0   0.0 ( 0 )
 Added by Luca Ciotti
 Publication date 2017
  fields Physics
and research's language is English
 Authors L. Ciotti




Ask ChatGPT about the research

Dynamical properties of spherically symmetric galaxy models where both the stellar and total mass density distributions are described by the Jaffe (1983) profile (with different scale-lenghts and masses), are presented. The orbital structure of the stellar component is described by Osipkov--Merritt anisotropy, and a black hole (BH) is added at the center of the galaxy; the dark matter halo is isotropic. First, the conditions required to have a nowhere negative and monothonically decreasing dark matter halo density profile, are derived. We then show that the phase-space distribution function can be recovered by using the Lambert-Euler $W$ function, while in absence of the central BH only elementary functions appears in the integrand of the inversion formula. The minimum value of the anisotropy radius for consistency is derived in terms of the galaxy parameters. The Jeans equations for the stellar component are solved analytically, and the projected velocity dispersion at the center and at large radii are also obtained analytically for generic values of the anisotropy radius. Finally, the relevant global quantities entering the Virial Theorem are computed analytically, and the fiducial anisotropy limit required to prevent the onset of Radial Orbit Instability is determined as a function of the galaxy parameters. The presented models, even though highly idealized, represent a substantial generalization of the models presentd in Ciotti et al. (2009), and can be useful as starting point for more advanced modeling the dynamics and the mass distribution of elliptical galaxies.

rate research

Read More

81 - L. Ciotti 2018
The fully analytical solution for isothermal Bondi accretion on a black hole (MBH) at the center of two-component Jaffe (1983) galaxy models is presented. In a previous work we provided the analytical expressions for the critical accretion parameter and the radial profile of the Mach number in the case of accretion on a MBH at the center of a spherically symmetric one-component Jaffe galaxy model. Here we apply this solution to galaxy models where both the stellar and total mass density distributions are described by the Jaffe profile, with different scale-lengths and masses, and to which a central MBH is added. For such galaxy models all the relevant stellar dynamical properties can also be derived analytically (Ciotti & Ziaee Lorzad 2018). In these new models the hydrodynamical and stellar dynamical properties are linked by imposing that the gas temperature is proportional to the virial temperature of the galaxy stellar component. The formulae that are provided allow to evaluate all flow properties, and are then useful for estimates of the scale-radius and the mass flow rate when modeling accretion on massive black holes at the center of galaxies. As an application, we quantify the departure from the true mass accretion rate of estimates obtained using the gas properties at various distances from the MBH, under the hypothesis of classical Bondi accretion.
139 - L. Ciotti 2020
Recently, two-component spherical galaxy models have been presented, where the stellar profile is described by a Jaffe law, and the total density by another Jaffe law, or by an $r^{-3}$ law at large radii. We extend these two families to their ellipsoidal axisymmetric counterparts: the JJe and J3e models. The total and stellar density distributions can have different flattenings and scale lengths, and the dark matter halo is defined by difference. First, the analytical conditions required to have a nowhere negative dark matter halo density are derived. The Jeans equations for the stellar component are then solved analytically, in the limit of small flattenings, also in presence of a central BH. The azimuthal velocity dispersion anisotropy is described by the Satoh $k$-decomposition. Finally, we present the analytical formulae for velocity fields near the center and at large radii, together with the various terms entering the Virial Theorem. The JJe and J3e models can be useful in a number of theoretical applications, e.g. to explore the role of the various parameters (flattening, relative scale lengths, mass ratios, rotational support) in determining the behavior of the stellar kinematical fields before performing more time-expensive integrations with specific galaxy models, to test codes of stellar dynamics, and in numerical simulations of gas flows in galaxies.
The dynamical properties of spherically symmetric galaxy models, where a Jaffe (1983) stellar density profile is embedded in a total mass density decreasing as $r^{-3}$ at large radii, are presented. The orbital structure of the stellar component is described by the Osipkov--Merritt anisotropy; the dark matter halo is isotropic, and a black hole is added at the center of the galaxy. First, the conditions for a nowhere negative and monotonically decreasing dark matter halo density profile are derived; this profile can be made asymptotically coincident with a NFW profile at the center and at large radii. Then the minimum value of the anisotropy radius for phase-space consistency is derived as a function of the galaxy parameters. The Jeans equations for the stellar component are solved analytically; the projected velocity dispersion at the center and at large radii is also obtained, for generic values of the anisotropy radius. Finally, analytical expressions for the terms entering the Virial Theorem are derived, and the fiducial anisotropy limit required to prevent the onset of Radial Orbit Instability is determined as a function of the galaxy parameters. The presented models, built following an approach already adopted in our previous works, can be a useful starting point for a more advanced modeling of the dynamics of elliptical galaxies, and can be easily implemented in numerical simulations requiring a realistic dynamical model of a galaxy.
117 - L. Ciotti 2017
One of the most active fields of research of modern-day astrophysics is that of massive black hole formation and co-evolution with the host galaxy. In these investigations, ranging from cosmological simulations, to semi-analytical modeling, to observational studies, the Bondi solution for accretion on a central point mass is widely adopted. In this work we generalize the classical Bondi accretion theory to take into account the effects of the gravitational potential of the host galaxy, and of radiation pressure in the optically thin limit. Then, we present the fully analytical solution, in terms of the Lambert-Euler $W$-function, for isothermal accretion in Jaffe and Hernquist galaxies with a central black hole. The flow structure is found to be sensitive to the shape of the mass profile of the host galaxy. These results and the formulae that are provided, mostly important the one for the critical accretion parameter, allow for a direct evaluation of all flow properties, and are then useful for the above mentioned studies. As an application, we examine the departure from the true mass accretion rate of estimates obtained using the gas properties at various distances from the black hole, under the hypothesis of classical Bondi accretion. An overestimate is obtained from regions close to the black hole, and an underestimate outside a few Bondi radii; the exact position of the transition between the two kinds of departure depends on the galaxy model.
(abridged) In this paper we revisit the problem of inferring the innermost structure of the Milky Ways nuclear star cluster via star counts, to clarify whether it displays a core or a cusp around the central black hole. Through image stacking and improved PSF fitting we push the completeness limit about one magnitude deeper than in previous, comparable work. Contrary to previous work, we analyse the stellar density in well-defined magnitude ranges in order to be able to constrain stellar masses and ages. The RC and brighter giant stars display a core-like surface density profile within a projected radius R<0.3 pc of the central black hole, in agreement with previous studies, but show a cusp-like surface density distribution at larger R. The surface density of the fainter stars can be described well by a single power-law at R<2 pc. The cusp-like profile of the faint stars persists even if we take into account the possible contamination of stars in this brightness range by young pre-main sequence stars. The data are inconsistent with a core-profile for the faint stars.Finally, we show that a 3D Nuker law provides a very good description of the cluster structure. We conclude that the observed stellar density at the Galactic Centre, as it can be inferred with current instruments, is consistent with the existence of a stellar cusp around the Milky Ways central black hole, Sgr A*. This cusp is well developed inside the influence radius of about 3 pc of Sgr A* and can be described by a single three-dimensional power-law with an exponent gamma=1.23+-0.05. The apparent lack of RC stars and brighter giants at projected distances of R < 0.3 pc (R<8) of the massive black hole may indicate that some mechanism has altered their distribution or intrinsic luminosity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا