No Arabic abstract
(abridged) In this paper we revisit the problem of inferring the innermost structure of the Milky Ways nuclear star cluster via star counts, to clarify whether it displays a core or a cusp around the central black hole. Through image stacking and improved PSF fitting we push the completeness limit about one magnitude deeper than in previous, comparable work. Contrary to previous work, we analyse the stellar density in well-defined magnitude ranges in order to be able to constrain stellar masses and ages. The RC and brighter giant stars display a core-like surface density profile within a projected radius R<0.3 pc of the central black hole, in agreement with previous studies, but show a cusp-like surface density distribution at larger R. The surface density of the fainter stars can be described well by a single power-law at R<2 pc. The cusp-like profile of the faint stars persists even if we take into account the possible contamination of stars in this brightness range by young pre-main sequence stars. The data are inconsistent with a core-profile for the faint stars.Finally, we show that a 3D Nuker law provides a very good description of the cluster structure. We conclude that the observed stellar density at the Galactic Centre, as it can be inferred with current instruments, is consistent with the existence of a stellar cusp around the Milky Ways central black hole, Sgr A*. This cusp is well developed inside the influence radius of about 3 pc of Sgr A* and can be described by a single three-dimensional power-law with an exponent gamma=1.23+-0.05. The apparent lack of RC stars and brighter giants at projected distances of R < 0.3 pc (R<8) of the massive black hole may indicate that some mechanism has altered their distribution or intrinsic luminosity.
The distribution of stars around a massive black hole (MBH) has been addressed in stellar dynamics for the last four decades by a number of authors. Because of its proximity, the centre of the Milky Way is the only observational test case where the stellar distribution can be accurately tested. Past observational work indicated that the brightest giants in the Galactic Centre (GC) may show a density deficit around the central black hole, not a cusp-like distribution, while we theoretically expect the presence of a stellar cusp. We here present a solution to this long-standing problem. We performed direct-summation $N-$body simulations of star clusters around massive black holes and compared the results of our simulations with new observational data of the GCs nuclear cluster. We find that after a Hubble time, the distribution of bright stars as well as the diffuse light follow power-law distributions in projection with slopes of $Gamma approx 0.3$ in our simulations. This is in excellent agreement with what is seen in star counts and in the distribution of the diffuse stellar light extracted from adaptive-optics (AO) assisted near-infrared observations of the GC. Our simulations also confirm that there exists a missing giant star population within a projected radius of a few arcsec around Sgr A*. Such a depletion of giant stars in the innermost 0.1 pc could be explained by a previously present gaseous disc and collisions, which means that a stellar cusp would also be present at the innermost radii, but in the form of degenerate compact cores.
This is the second of three papers that search for the predicted stellar cusp around the Milky Ways central black hole, Sagittarius A*, with new data and methods. We aim to infer the distribution of the faintest stellar population currently accessible through observations around Sagittarius A*. We use adaptive optics assisted high angular resolution images obtained with the NACO instrument at the ESO VLT. Through optimised PSF fitting we remove the light from all detected stars above a given magnitude limit. Subsequently we analyse the remaining, diffuse light density. The analysed diffuse light arises from sub-giant and main-sequence stars with KS ~ 19 - 20 with masses of 1 - 2 Msol . These stars can be old enough to be dynamically relaxed. The observed power-law profile and its slope are consistent with the existence of a relaxed stellar cusp around the Milky Ways central black hole. We find that a Nuker law provides an adequate description of the nuclear clusters intrinsic shape (assuming spherical symmetry). The 3D power-law slope near Sgr A* is gamma = 1.23 +- 0.05. At a distance of 0.01 pc from the black hole, we estimate a stellar mass density of 2.3 +- 0.3 x 10^7 Msol pc^-3 and a total enclosed stellar mass of 180 +- 20 Msol. These estimates assume a constant mass-to-light ratio and do not take stellar remnants into account. The fact that no cusp is observed for bright (Ks 16) giant stars at projected distances of roughly 0.1-0.3 pc implies that some mechanism has altered their appearance or distribution.
We show for the first time, that a fully cosmological hydrodynamical simulation can reproduce key properties of the innermost region of the Milky Way. Our high resolution simulation matches the profile and kinematics of the Milky Ways boxy/peanut-shaped bulge, and hence we can use it to reconstruct and understand the bulge assembly. In particular, the age dependence of the X-shape morphology of the simulated bulge parallels the observed metallicity dependent split in the red clump stars of the inner Galaxy. We use this feature to derive an observational metric that allows us to quantify when the bulge formed from the disk. The metric we propose can be employed with upcoming survey data to constrain the age of the Milky Way bar. From the split in stellar counts we estimate the formation of the 4~kpc scale bar in the simulation to have happened $t^{rm bar}_{rm form}sim8^{+2}_{-2}$ Gyr ago, in good agreement with conventional methods to measure bar formation in simulations. We test the prospects for observationally differentiating the stars that belong to the bulge/bar compared to the surrounding disk, and find that the inner disk and bulge are practically indistinguishable in both chemistry and ages.
In a dynamically relaxed cluster around a massive black hole a dense stellar cusp of old stars is expected to form. Previous observations showed a relative paucity of red giant stars within the central 0.5 pc in the Galactic Center. By co-adding spectroscopic observations taken over a decade, we identify new late-type stars, including the first five warm giants (G2-G8III), within the central 1 arcsec 2 (0.04 {times} 0.04 pc^2) of the Galaxy. Our findings increase the number of late-type stars to 21, of which we present deep spectra for 16. The updated star count, based on individual spectral classification, is used to reconstruct the surface density profile of giant stars. Our study, for the first time, finds a cusp in the surface number density of the spectroscopically identified old (>3 Gyr) giants population (m K<17) within 0.02-0.4 pc described by a single power law with an exponent {Gamma}= 0.34 {pm} 0.04.
We use hydrodynamical simulations to study the Milky Ways central molecular zone (CMZ). The simulations include a non-equilibrium chemical network, the gas self-gravity, star formation and supernova feedback. We resolve the structure of the interstellar medium at sub-parsec resolution while also capturing the interaction between the CMZ and the bar-driven large-scale flow out to $Rsim 5kpc$. Our main findings are as follows: (1) The distinction between inner ($Rlesssim120$~pc) and outer ($120lesssim Rlesssim450$~pc) CMZ that is sometimes proposed in the literature is unnecessary. Instead, the CMZ is best described as single structure, namely a star-forming ring with outer radius $Rsimeq 200$~pc which includes the 1.3$^circ$ complex and which is directly interacting with the dust lanes that mediate the bar-driven inflow. (2) This accretion can induce a significant tilt of the CMZ out of the plane. A tilted CMZ might provide an alternative explanation to the $infty$-shaped structure identified in Herschel data by Molinari et al. 2011. (3) The bar in our simulation efficiently drives an inflow from the Galactic disc ($Rsimeq 3$~kpc) down to the CMZ ($Rsimeq200$~pc) of the order of $1rm,M_odot,yr^{-1}$, consistent with observational determinations. (4) Supernova feedback can drive an inflow from the CMZ inwards towards the circumnuclear disc of the order of $sim0.03,rm M_odot,yr^{-1}$. (5) We give a new interpretation for the 3D placement of the 20 and 50 km s$^{-1}$ clouds, according to which they are close ($Rlesssim30$~pc) to the Galactic centre, but are also connected to the larger-scale streams at $Rgtrsim100$~pc.