Do you want to publish a course? Click here

Investigation of the commensurate magnetic structure in heavy fermion CePt2In7 using magnetic resonant X-ray diffraction

94   0   0.0 ( 0 )
 Added by Nicolas Gauthier
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated the magnetic structure of the heavy fermion compound CePt$_2$In$_7$ below $T_N~=5.34(2)$ K using magnetic resonant X-ray diffraction at ambient pressure. The magnetic order is characterized by a commensurate propagation vector ${k}_{1/2}~=~left( frac{1}{2} , frac{1}{2}, frac{1}{2}right)$ with spins lying in the basal plane. Our measurements did not reveal the presence of an incommensurate order propagating along the high symmetry directions in reciprocal space but cannot exclude other incommensurate modulations or weak scattering intensities. The observed commensurate order can be described equivalently by either a single-${k}$ structure or by a multi-${k}$ structure. Furthermore we explain how a commensurate-only ordering may explain the broad distribution of internal fields observed in nuclear quadrupolar resonance experiments (Sakai et al. 2011, Phys. Rev. B 83 140408) that was previously attributed to an incommensurate order. We also report powder X-ray diffraction showing that the crystallographic structure of CePt$_2$In$_7$ changes monotonically with pressure up to $P~=~7.3$ GPa at room temperature. The determined bulk modulus $B_0~=~81.1(3)$ GPa is similar to the ones of the Ce-115 family. Broad diffraction peaks confirm the presence of pronounced strain in polycrystalline samples of CePt$_2$In$_7$. We discuss how strain effects can lead to different electronic and magnetic properties between polycrystalline and single crystal samples.



rate research

Read More

126 - M. Mansson , K. Prsa , Y. Sassa 2014
The low-temperature microscopic magnetic properties of the quasi-2D heavyfermion compound, CePt2In7 are investigated by using a positive muon-spin rotation and relaxation (?muSR) technique. Clear evidence for the formation of a commensurate antiferromagnetic order below TN=5.40 K is presented. The magnetic order parameter is shown to fit well to a modified BSC gap-energy function in a strong-coupling scenario.
X-ray diffraction with photon energies near the Ru L$_2$-absorption edge was used to detect resonant reflections characteristic of a G-type superstructure in RuSr$_2$GdCu$_2$O$_8$ single crystals. A polarization analysis confirms that these reflections are due to magnetic order of Ru moments, and the azimuthal-angle dependence of the scattering amplitude reveals that the moments lie along a low-symmetry axis with substantial components parallel and perpendicular to the RuO$_2$ layers. Complemented by susceptibility data and a symmetry analysis of the magnetic structure, these results reconcile many of the apparently contradictory findings reported in the literature.
We have performed resonant X-ray diffraction experiments on the antiferromagnet GdRu$_{2}$Al$_{10}$ and have clarified that the magnetic structure in the ordered state is cycloidal with the moments lying in the $bc$ plane and propagating along the $b$ axis. The propagation vector shows a similar temperature dependence to the magnetic order parameter, which can be interpreted as being associated with the gap opening in the conduction band and the resultant change in the magnetic exchange interaction. Although the $S=7/2$ state of Gd is almost isotropic, the moments show slight preferential ordering along the $b$ axis. The $c$ axis component in the cycloid develops with decreasing temperature through a tiny transition in the ordered phase. We also show that the scattering involves the $sigma$-$sigma$ process, which is forbidden in normal $E1$-$E1$ resonance of magnetic dipole origin. We discuss the possibility of the $E1$-$E2$ resonance originating from a toroidal moment due to the lack of inversion symmetry at the Gd site. The spin-flop transition in a magnetic field is also described in detail.
The magnetic structure and fluctuations of tetragonal GdRhIn5 were studied by resonant x-ray diffraction at the Gd LII and LIII edges, followed by a renormalization group analysis for this and other related Gd-based compounds, namely Gd2IrIn8 and GdIn3. These compounds are spin-only analogs of the isostructural Ce-based heavy-fermion superconductors. The ground state of GdRhIn5 shows a commensurate antiferromagnetic spin structure with propagation vector tau = (0,1/2, 1/2), corresponding to a parallel spin alignment along the a-direction and antiparallel alignment along b and c. A comparison between this magnetic structure and those of other members of the Rm(Co,Rh,Ir)n In3m+2n family (R =rare earth, n = 0, 1; m = 1, 2) indicates that, in general, tau is determined by a competition between first-(J1) and second-neighbor(J2) antiferromagnetic (AFM) interactions. While a large J1 /J2 ratio favors an antiparallel alignment along the three directions (the so-called G-AFM structure), a smaller ratio favors the magnetic structure of GdRhIn5 (C-AFM). In particular, it is inferred that the heavy-fermion superconductor CeRhIn5 is in a frontier between these two ground states, which may explain its non-collinear spiral magnetic structure. The critical behavior of GdRhIn5 close to the paramagnetic transition at TN = 39 K was also studied in detail. A typical second-order transition with the ordered magnetization critical parameter beta = 0.35 was experimentally found, and theoretically investigated by means of a renormalization group analysis.
Resonant magnetic x-ray scattering has been used to investigate the magnetic structure of the magnetoelectric multiferroic DyMn2O5. We have studied the magnetic structure in the ferroelectric phase of this material, which displays the strongest ferroelectric polarisation and magnetodielectric effect of the RMn2O5 (where R is a rare earth ion, Y or Bi) family. The magnetic structure observed is similar to that of the other members of the series, but differs in the direction of the ordered moments. In DyMn2O5 both the Dy and Mn moments lie close to the b-axis, whereas in other RMn2O5 they lie close to the a-axis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا