No Arabic abstract
The atomic-level tunability that results from alloying multiple transition metals with d electrons in concentrated solid solution alloys (CSAs), including high-entropy alloys (HEAs), has produced remarkable properties for advanced energy applications, in particular, damage resistance in high-radiation environments. The key to understanding CSAs radiation performance is quantitatively characterizing their complex local physical and chemical environments. In this study, the local structure of a FeCoNiCrPd HEA is quantitatively analyzed with X-ray total scattering and extended X-ray absorption fine structure methods. Compared to FeCoNiCr and FeCoNiCrMn, FeCoNiCrPd with a quasi-random alloy structure has a strong local lattice distortion, which effectively pins radiation-induced defects. Distinct from a relaxation behavior in FeCoNiCr and FeCoNiCrMn, ion irradiation further enhanced the local lattice distortion in FeCoNiCrPd due to a preference for forming Pd-Pd atomic pairs.
Whereas exceptional mechanical and radiation performances have been found in the emergent medium- and high-entropy alloys (MEAs and HEAs), the importance of their complex atomic environment, reflecting diversity in atomic size and chemistry, to defect transport has been largely unexplored at the atomic level. Here we adopt a local structure approach based on the atomic pair distribution function measurements in combination with density functional theory calculations to investigate a series of body-centered cubic (BCC) MEAs and HEAs. Our results demonstrate that all alloys exhibit local lattice distortions (LLD) to some extent, but an anomalous LLD, merging of the first and second atomic shells, occurs only in the Zr- and/or Hf-containing MEAs and HEAs. In addition, through the ab-initio simulations we show that charge transfer among the elements profoundly reduce the size mismatch effect. The observed competitive coexistence between LLD and charge transfer not only demonstrates the importance of the electronic effects on the local environments in MEAs and HEAs, but also provides new perspectives to in-depth understanding of the complicated defect transport in these alloys.
It is often assumed that atoms are hard spheres in the estimation of local lattice distortion (LLD) in high-entropy alloys (HEAs). However, our study demonstrates that the hard sphere model misses the key effect, charge transfer among atoms with different electronegativities, in the understanding of the stabilization of severely-distorted HEAs. Through the characterization and simulations of the local structure of the HfNbTiZr HEA, we found that the charge transfer effect competes with LLD to significantly reduce the average atomic-size mismatch. Our finding may form the basis for the design of severely distorted, but stable HEAs.
The lattice dynamics for NiCo, NiFe, NiFeCo, NiFeCoCr, and NiFeCoCrMn medium to high entropy alloy have been investigated using the DFT calculation. The phonon dispersions along three different symmetry directions are calculated by the weighted dynamical matrix (WDM) approach and compared with the supercell approach and inelastic neutron scattering. We could correctly predict the trend of increasing of the vibrational entropy by adding the alloys and the highest vibrational entropy in NiFeCoCrMn high entropy alloy by WDM approach. The averaged first nearest neighbor (1NN) force constants between various pairs of atoms in these intermetallic are obtained from the WDM approach. The results are discussed based on the analysis of these data.
We study order transitions and defect formation in a model high-entropy alloy (CuNiCoFe) under ion irradiation by means of molecular dynamics simulations. Using a hybrid Monte-Carlo/molecular dynamics scheme a model alloy is generated which is thermodynamically stabilized by configurational entropy at elevated temperatures, but partly decomposes at lower temperatures by copper precipation. Both the high-entropy and the multiphase sample are then subjected to simulated particle irradiation. The damage accumulation is analyzed and compared to an elemental Ni reference system. The results reveal that the high-entropy alloy---independent of the initial configuration---installs a certain fraction of short-range order even under particle irradiation. Moreover, the results provide evidence that defect accumulation is reduced in the high-entropy alloy. This is because the reduced mobility of point defects leads to a steady state of defect creation and annihilation. The lattice defects generated by irradiation are shown to act as sinks for Cu segregation.
Understanding the strengthening and deformation mechanisms in refractory high-entropy alloys (HEAs), proposed as new high-temperature material, is required for improving their typically insufficient room-temperature ductility. Here, density-functional theory simulations and a continuum mechanics analysis were conducted to systematically investigate the competition between cleavage decohesion and dislocation emission from a crack tip in the body-centered cubic refractory HEAs HfNbTiZr, MoNbTaVW, MoNbTaW, MoNbTiV, and NbTiVZr. This crack-tip competition is evaluated for tensile loading and a totality of 15 crack configurations and slip systems. Our results predict that dislocation plasticity at the crack tip is generally unfavorable -- although the competition is close for some crack orientations, suggesting intrinsic brittleness and low crack-tip fracture toughness in these five HEAs at zero temperature. Fluctuations in local alloy composition, investigated for HfNbTiZr, can locally reduce the resistance to dislocation emission for a slip system relative to the configuration average of that slip system, but do not change the dominant crack-tip response. In the case of single-crystal MoNbTaW, where an experimental, room-temperature fracture-toughness value is available for a crack on a {100} plane, theoretical and experimental results agree favorably. Factors that may limit the agreement are discussed. We survey the effect of material anisotropy on preferred crack tip orientations, which are found to be alloy specific. Mixed-mode loadings are found to shift the competition in favor of cleavage or dislocation nucleation, depending on crack configuration and amplified by the effect of material anisotropy on crack tip stresses.