Do you want to publish a course? Click here

Local segregation versus irradiation effects in high-entropy alloys: Steady-state conditions in a driven system

78   0   0.0 ( 0 )
 Added by Tobias Brink
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study order transitions and defect formation in a model high-entropy alloy (CuNiCoFe) under ion irradiation by means of molecular dynamics simulations. Using a hybrid Monte-Carlo/molecular dynamics scheme a model alloy is generated which is thermodynamically stabilized by configurational entropy at elevated temperatures, but partly decomposes at lower temperatures by copper precipation. Both the high-entropy and the multiphase sample are then subjected to simulated particle irradiation. The damage accumulation is analyzed and compared to an elemental Ni reference system. The results reveal that the high-entropy alloy---independent of the initial configuration---installs a certain fraction of short-range order even under particle irradiation. Moreover, the results provide evidence that defect accumulation is reduced in the high-entropy alloy. This is because the reduced mobility of point defects leads to a steady state of defect creation and annihilation. The lattice defects generated by irradiation are shown to act as sinks for Cu segregation.



rate research

Read More

177 - Dominique Chatain 2020
This paper compares two approaches for investigating the near-surface composition profile that results from surface segregation in the so-called Cantor alloy, an equi-molar alloy of CoCrFeMnNi. One approach consists of atomistic computer simulations by a combination of Monte Carlo, molecular dynamics and molecular statics techniques, and the other is a nearest neighbor analytical calculation performed in the regular solution approximation with a multilayer model, developed here for the first time for a N-component system and tested for the 5-component Cantor alloy. This type of comparison is useful because a typical computer simulation requires the use of ~100 parallel processors for 2 to 3 hours, whereas a similar calculation by means of the analytical model can be performed in a few seconds on a laptop machine. The results obtained show qualitatively good agreement between the two approaches. Thus, while the results of the computer simulations are presumably more reliable, and provide an atomic scale picture, if massive computations are required, for example, in order to optimize the composition of a multicomponent alloy, then an initial screening of the composition space by the analytical model could provide a highly useful means of narrowing the regions of interest, in the same way that the CALPHAD method allows rapid investigation of phase diagrams in complex multinary systems.
Whereas exceptional mechanical and radiation performances have been found in the emergent medium- and high-entropy alloys (MEAs and HEAs), the importance of their complex atomic environment, reflecting diversity in atomic size and chemistry, to defect transport has been largely unexplored at the atomic level. Here we adopt a local structure approach based on the atomic pair distribution function measurements in combination with density functional theory calculations to investigate a series of body-centered cubic (BCC) MEAs and HEAs. Our results demonstrate that all alloys exhibit local lattice distortions (LLD) to some extent, but an anomalous LLD, merging of the first and second atomic shells, occurs only in the Zr- and/or Hf-containing MEAs and HEAs. In addition, through the ab-initio simulations we show that charge transfer among the elements profoundly reduce the size mismatch effect. The observed competitive coexistence between LLD and charge transfer not only demonstrates the importance of the electronic effects on the local environments in MEAs and HEAs, but also provides new perspectives to in-depth understanding of the complicated defect transport in these alloys.
106 - Y. Tong , G. Velisa , T. Yang 2017
The atomic-level tunability that results from alloying multiple transition metals with d electrons in concentrated solid solution alloys (CSAs), including high-entropy alloys (HEAs), has produced remarkable properties for advanced energy applications, in particular, damage resistance in high-radiation environments. The key to understanding CSAs radiation performance is quantitatively characterizing their complex local physical and chemical environments. In this study, the local structure of a FeCoNiCrPd HEA is quantitatively analyzed with X-ray total scattering and extended X-ray absorption fine structure methods. Compared to FeCoNiCr and FeCoNiCrMn, FeCoNiCrPd with a quasi-random alloy structure has a strong local lattice distortion, which effectively pins radiation-induced defects. Distinct from a relaxation behavior in FeCoNiCr and FeCoNiCrMn, ion irradiation further enhanced the local lattice distortion in FeCoNiCrPd due to a preference for forming Pd-Pd atomic pairs.
The lattice dynamics for NiCo, NiFe, NiFeCo, NiFeCoCr, and NiFeCoCrMn medium to high entropy alloy have been investigated using the DFT calculation. The phonon dispersions along three different symmetry directions are calculated by the weighted dynamical matrix (WDM) approach and compared with the supercell approach and inelastic neutron scattering. We could correctly predict the trend of increasing of the vibrational entropy by adding the alloys and the highest vibrational entropy in NiFeCoCrMn high entropy alloy by WDM approach. The averaged first nearest neighbor (1NN) force constants between various pairs of atoms in these intermetallic are obtained from the WDM approach. The results are discussed based on the analysis of these data.
High entropy alloys (HEAs) are a series of novel materials that demonstrate many exceptional mechanical properties. To understand the origin of these attractive properties, it is important to investigate the thermodynamics and elucidate the evolution of various chemical phases. In this work, we introduce a data-driven approach to construct the effective Hamiltonian and study the thermodynamics of HEAs through canonical Monte Carlo simulation. The main characteristic of our method is to use pairwise interactions between atoms as features and systematically improve the representativeness of the dataset using samples from Monte Carlo simulation. We find this method produces highly robust and accurate effective Hamiltonians that give less than 0.1 mRy test error for all the three refractory HEAs: MoNbTaW, MoNbTaVW, and MoNbTaTiW. Using replica exchange to speed up the MC simulation, we calculated the specific heats and short-range order parameters in a wide range of temperatures. For all the studied materials, we find there are two major order-disorder transitions occurring respectively at $T_1$ and $T_2$, where $T_1$ is near room temperature but $T_2$ is much higher. We further demonstrate that the transition at $T_1$ is caused by W and Nb while the one at $T_2$ is caused by the other elements. By comparing with experiments, {color{black} the results provide insight into the role of chemical ordering in the strength and ductility of HEAs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا