Do you want to publish a course? Click here

Dirac Equation in (1+1)-Dimensional Curved Spacetime and the Multiphoton Quantum Rabi Model

121   0   0.0 ( 0 )
 Added by Julen Pedernales
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce an exact mapping between the Dirac equation in (1+1)-dimensional curved spacetime (DCS) and a multiphoton quantum Rabi model (QRM). A background of a (1+1)-dimensional black hole requires a QRM with one- and two-photon terms that can be implemented in a trapped ion for the quantum simulation of Dirac particles in curved spacetime. We illustrate our proposal with a numerical analysis of the free fall of a Dirac particle into a (1+1)-dimensional black hole, and find that the Zitterbewegung effect, measurable via the oscillatory trajectory of the Dirac particle, persists in the presence of gravity. From the duality between the squeezing term in the multiphoton QRM and the metric coupling in the DCS, we show that gravity generates squeezing of the Dirac particle wave function.



rate research

Read More

A discrete-time quantum walk (QW) is essentially a unitary operator driving the evolution of a single particle on the lattice. Some QWs have familiar physics PDEs as their continuum limit. Some slight generalization of them (allowing for prior encoding and larger neighbourhoods) even have the curved spacetime Dirac equation, as their continuum limit. In the $(1+1)-$dimensional massless case, this equation decouples as scalar transport equations with tunable speeds. We characterise and construct all those QWs that lead to scalar transport with tunable speeds. The local coin operator dictates that speed; we provide concrete techniques to tune the speed of propagation, by making use only of a finite number of coin operators---differently from previous models, in which the speed of propagation depends upon a continuous parameter of the quantum coin. The interest of such a discretization is twofold : to allow for easier experimental implementations on the one hand, and to evaluate ways of quantizing the metric field, on the other.
A boundary undergoing relativistic motion can create particles from quantum vacuum fluctuations in a phenomenon known as the dynamical Casimir effect. We examine the creation of particles, and more generally the transformation of quantum field states, due to boundary motion in curved spacetime. We provide a novel method enabling the calculation of the effect for a wide range of trajectories and spacetimes. We apply this to the experimental scenario used to detect the dynamical Casimir effect, now adopting the Schwarzschild metric, and find novel resonances in particle creation as a result of the spacetime curvature. Finally, we discuss a potential enhancement of the effect for the phonon field of a Bose-Einstein condensate.
Gravity induced neutrino-antineutrino oscillations are studied in the context of one and two flavor scenarios. This allows one to investigate the particle-antiparticle correlations in two and four level systems, respectively. Flavor entropy is used to probe the entanglement in the system. The well known witnesses of non-classicality such as Mermin and Svetlichly inequalities are investigated. Since the extent of neutrino-antineutrino oscillation is governed by the strength of the gravitational field, the behavior of non-classicality shows interesting features as one varies the strength of the gravitational field. Specifically, the suppression of the entanglement with the increase of the gravitational field is observed which is witnessed in the form of decrease in the flavor entropy of the system. The features of the Mermin and the Svetlichny inequalities allow one to make statements about the degeneracy of neutrino mass eigenstates.
84 - Ken K. W. Ma 2020
The generalized Rabi model (gRM) with both one- and two-photon coupling terms has been successfully implemented in circuit quantum electrodynamics systems. In this paper, we examine theoretically multiphoton resonances in the gRM and derive their effective Hamiltonians. With different detunings in the system, we show that all three- to six-photon resonances can be achieved by involving two intermediate states. Furthermore, we study the interplay between multiphoton resonance and chiral transport of photon Fock states in a resonator junction with broken time-reversal symmetry. Depending on the qubit-photon interaction and photon-hopping amplitude, we find that the system can demonstrate different short-time dynamics.
We present the fundamental solutions for the spin-1/2 fields propagating in the spacetimes with power type expansion/contraction and the fundamental solution of the Cauchy problem for the Dirac equation. The derivation of these fundamental solutions is based on formulas for the solutions to the generalized Euler-Poisson-Darboux equation, which are obtained by the integral transform approach.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا