No Arabic abstract
The edit distance function of a hereditary property $mathscr{H}$ is the asymptotically largest edit distance between a graph of density $pin[0,1]$ and $mathscr{H}$. Denote by $P_n$ and $C_n$ the path graph of order $n$ and the cycle graph of order $n$, respectively. Let $C_{2n}^*$ be the cycle graph $C_{2n}$ with a diagonal, and $widetilde{C_n}$ be the graph with vertex set ${v_0, v_1, ldots, v_{n-1}}$ and $E(widetilde{C_n})=E(C_n)cup {v_0v_2}$. Marchant and Thomason determined the edit distance function of $C_6^{*}$. Peck studied the edit distance function of $C_n$, while Berikkyzy et al. studied the edit distance of powers of cycles. In this paper, by using the methods of Peck and Martin, we determine the edit distance function of $C_8^{*}$, $widetilde{C_n}$ and $P_n$, respectively.
Given a hereditary property $mathcal H$ of graphs and some $pin[0,1]$, the edit distance function $operatorname{ed}_{mathcal H}(p)$ is (asymptotically) the maximum proportion of edits (edge-additions plus edge-deletions) necessary to transform any graph of density $p$ into a member of $mathcal H$. For any fixed $pin[0,1]$, $operatorname{ed}_{mathcal H}(p)$ can be computed from an object known as a colored regularity graph (CRG). This paper is concerned with those points $pin[0,1]$ for which infinitely many CRGs are required to compute $operatorname{ed}_{mathcal H}$ on any open interval containing $p$; such a $p$ is called an accumulation point. We show that, as expected, $p=0$ and $p=1$ are indeed accumulation points for some hereditary properties; we additionally determine the slope of $operatorname{ed}_{mathcal H}$ at these two extreme points. Unexpectedly, we construct a hereditary property with an accumulation point at $p=1/4$. Finally, we derive a significant structural property about those CRGs which occur at accumulation points.
Given a hereditary property of graphs $mathcal{H}$ and a $pin [0,1]$, the edit distance function ${rm ed}_{mathcal{H}}(p)$ is asymptotically the maximum proportion of edge-additions plus edge-deletions applied to a graph of edge density $p$ sufficient to ensure that the resulting graph satisfies $mathcal{H}$. The edit distance function is directly related to other well-studied quantities such as the speed function for $mathcal{H}$ and the $mathcal{H}$-chromatic number of a random graph. Let $mathcal{H}$ be the property of forbidding an ErdH{o}s-R{e}nyi random graph $Fsim mathbb{G}(n_0,p_0)$, and let $varphi$ represent the golden ratio. In this paper, we show that if $p_0in [1-1/varphi,1/varphi]$, then a.a.s. as $n_0toinfty$, begin{align*} {rm ed}_{mathcal{H}}(p) = (1+o(1)),frac{2log n_0}{n_0} cdotminleft{ frac{p}{-log(1-p_0)}, frac{1-p}{-log p_0} right}. end{align*} Moreover, this holds for $pin [1/3,2/3]$ for any $p_0in (0,1)$.
A Norton algebra is an eigenspace of a distance regular graph endowed with a commutative nonassociative product called the Norton product, which is defined as the projection of the entrywise product onto this eigenspace. The Norton algebras are useful in finite group theory as they have interesting automorphism groups. We provide a precise quantitative measurement for the nonassociativity of the Norton product on the eigenspace of the second largest eigenvalue of the Johnson graphs, Grassman graphs, Hamming graphs, and dual polar graphs, based on the formulas for this product established in previous work of Levstein, Maldonado and Penazzi. Our result shows that this product is as nonassociative as possible except for two cases, one being the trivial vanishing case while the other having connections with the integer sequence A000975 on OEIS and the so-called double minus operation studied recently by Huang, Mickey, and Xu.
Reeb graphs are structural descriptors that capture shape properties of a topological space from the perspective of a chosen function. In this work we define a combinatorial metric for Reeb graphs of orientable surfaces in terms of the cost necessary to transform one graph into another by edit operations. The main contributions of this paper are the stability property and the optimality of this edit distance. More precisely, the stability result states that changes in the functions, measured by the maximum norm, imply not greater changes in the corresponding Reeb graphs, measured by the edit distance. The optimality result states that our edit distance discriminates Reeb graphs better than any other metric for Reeb graphs of surfaces satisfying the stability property.
A distance graph is an undirected graph on the integers where two integers are adjacent if their difference is in a prescribed distance set. The independence ratio of a distance graph $G$ is the maximum density of an independent set in $G$. Lih, Liu, and Zhu [Star extremal circulant graphs, SIAM J. Discrete Math. 12 (1999) 491--499] showed that the independence ratio is equal to the inverse of the fractional chromatic number, thus relating the concept to the well studied question of finding the chromatic number of distance graphs. We prove that the independence ratio of a distance graph is achieved by a periodic set, and we present a framework for discharging arguments to demonstrate upper bounds on the independence ratio. With these tools, we determine the exact independence ratio for several infinite families of distance sets of size three, determine asymptotic values for others, and present several conjectures.