No Arabic abstract
Regarding the strong magnetic field of neutron stars and high energy regime scenario which is based on high curvature region near the compact objects, one is motivated to study magnetic neutron stars in an energy dependent spacetime. In this paper, we show that such strong magnetic field and energy dependency of spacetime have considerable effects on the properties of neutron stars. We examine the variations of maximum mass and related radius, Schwarzschild radius, average density, gravitational redshift, Kretschmann scalar and Buchdahl theorem due to magnetic field and also energy dependency of metric. First, it will be shown that the maximum mass and radius of neutron stars are increasing function of magnetic field while average density, redshift, the strength of gravity and Kretschmann scalar are decreasing functions of it. These results are due to a repulsive-like force behavior for the magnetic field. Next, the effects of the gravitys rainbow will be studied and it will be shown that by increasing the rainbow function, the neutron stars could enjoy an expansion in their structures. Then, we obtain a new relation for the upper mass limit of a static spherical neutron star with uniform density in gravitys rainbow (Buchdahl limit) in which such upper limit is modified as $M_{eff}<frac{4c^{2}R}{9G}$. In addition, stability and energy conditions for the equation of state of neutron star matter are also investigated and a comparison with empirical results is done. It is notable that the numerical study in this paper is conducted by using the lowest order constrained variational (LOCV) approach in the presence of magnetic field employing AV18 potential.
We calculate the exact solutions to the equations of motion that govern the light ray trajectories as they travel in a Kerr black holes exterior that is considered to be filled with an inhomogeneous and anisotropic plasmic medium. This is approached by characterizing the plasma through conceiving a radial and an angular structure function, which are let to be constant. The description of the motion is carried out by using the Hamilton-Jacobi method, that allows defining two effective potentials, characterizing the evolution of the polar coordinates. The elliptic integrals of motion are then solved analytically, and the evolution of coordinates is expressed in terms of the Mino time. This way, the three-dimensional demonstrations of the light ray trajectories are given respectively.
The innermost stable circular orbits (ISCOs) around rapidly rotating neutron stars are studied in dilatonic Einstein-Gauss-Bonnet theory. Universal relations for properly scaled ISCO properties are extended from General Relativity to dilatonic Einstein-Gauss-Bonnet theory and additional relations are obtained.
We make a critical comparison between ultra-high energy particle collisions around an extremal Kerr black hole and that around an over-spinning Kerr singularity, mainly focusing on the issue of the timescale of collisions. We show that the time required for two massive particles with the proton mass or two massless particles of GeV energies to collide around the Kerr black hole with Planck energy is several orders of magnitude longer than the age of the Universe for astro-physically relevant masses of black holes, whereas time required in the over-spinning case is of the order of ten million years which is much shorter than the age of the Universe. Thus from the point of view of observation of Planck scale collisions, the over-spinning Kerr geometry, subject to their occurrence, has distinct advantage over their black hole counterparts.
Two recent publications have reported intriguing analyses, tentatively suggesting that some aspects of IceCube data might be manifestations of quantum-gravity-modified laws of propagation for neutrinos. We here propose a strategy of data analysis which has the advantage of being applicable to several alternative possibilities for the laws of propagation of neutrinos in a quantum spacetime. In all scenarios here of interest one should find a correlation between the energy of an observed neutrino and the difference between the time of observation of that neutrino and the trigger time of a GRB. We select accordingly some GRB-neutrino candidates among IceCube events, and our data analysis finds a rather strong such correlation. This sort of studies naturally lends itself to the introduction of a false alarm probability, which for our analysis we estimate conservatively to be of 1%. We therefore argue that our findings should motivate a vigorous program of investigation following the strategy here advocated.
The gravitational deflection angle of light for an observer and source at finite distance from a lens object has been studied by Ishihara et al. [Phys. Rev. D, 94, 084015 (2016)], based on the Gauss-Bonnet theorem with using the optical metric. Their approach to finite-distance cases is limited within an asymptotically flat spacetime. By making several assumptions, we give an interpretation of their definition from the observers viewpoint: The observer assumes the direction of a hypothetical light emission at the observer position and makes a comparison between the fiducial emission direction and the direction along the real light ray. The angle between the two directions at the observer location can be interpreted as the deflection angle by Ishihara et al. The present interpretation does not require the asymptotic flatness. Motivated by this, we avoid such asymptotic regions to discuss another integral form of the deflection angle of light. This form makes it clear that the proposed deflection angle can be used not only for asymptotically flat spacetimes but also for asymptotically nonflat ones. We examine the proposed deflection angle in two models for the latter case; Kottler (Schwarzschild-de Sitter) solution in general relativity and a spherical solution in Weyl conformal gravity. Effects of finite distance on the light deflection in Weyl conformal gravity result in an extra term in the deflection angle, which may be marginally observable in a certain parameter region. On the other hand, those in Kottler spacetime are beyond reach of the current technology.