Do you want to publish a course? Click here

Ages and masses of million Galactic disk main sequence turn-off and sub-giant stars from the LAMOST Galactic spectroscopic surveys

135   0   0.0 ( 0 )
 Added by Maosheng Xiang
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present estimates of stellar age and mass for 0.93 million Galactic disk main sequence turn-off and sub-giant stars from the LAMOST Galactic Spectroscopic Surveys. The ages and masses are determined by matching with stellar isochrones using Bayesian algorithm, utilizing effective temperature $T_{rm eff}$, absolute magnitude ${rm M}_V$, metallicity [Fe/H] and $alpha$-element to iron abundance ratio [$alpha$/Fe] deduced from the LAMOST spectra. Extensive examinations suggest the age and mass estimates are robust. The overall sample stars have a median error of 34 per cent for the age estimates, and half of the stars older than 2,Gyr have age uncertainties of only 20--30 per cent. Median error for the mass estimates of the whole sample stars is $sim8$ per cent. The huge dataset demonstrates good correlations among stellar age, [Fe/H] ([$alpha$/H]) and [$alpha$/Fe]. Particularly, double sequence features are revealed in the both the age--[$alpha$/Fe] and age--[Fe/H]([$alpha$/H]) spaces. In the [Fe/H]--[$alpha$/Fe] space, stars of 8--10,Gyr exhibit both the thin and thick disk sequences, while younger (older) stars show only the thin (thick) disk sequence, indicating that the thin disk became prominent 8--10,Gyr ago, while the thick disk formed earlier and almost quenched 8,Gyr ago. Stellar ages exhibit positive vertical and negative radial gradients across the disk, and the outer disk of $Rgtrsim$,9,kpc exhibits a strong flare in stellar age distribution.



rate research

Read More

We present a catalog of stellar age and mass estimates for a sample of 640,986 red giant branch (RGB) stars of the Galactic disk from the LAMOST Galactic Spectroscopic Survey (DR4). The RGB stars are distinguished from the red clump stars utilizing period spacing derived from the spectra with a machine learning method based on kernel principal component analysis (KPCA). Cross-validation suggests our method is capable of distinguishing RC from RGB stars with only 2 per cent contamination rate for stars with signal-to-noise ratio (SNR) higher than 50. The age and mass of these RGB stars are determined from their LAMOST spectra with KPCA method by taking the LAMOST - $Kepler$ giant stars having asteroseismic parameters and the LAMOST-TGAS sub-giant stars based on isochrones as training sets. Examinations suggest that the age and mass estimates of our RGB sample stars with SNR $>$ 30 have a median error of 30 per cent and 10 per cent, respectively. Stellar ages are found to exhibit positive vertical and negative radial gradients across the disk, and the age structure of the disk is strongly flared across the whole disk of $6<R<13$,kpc. The data set demonstrates good correlations among stellar age, [Fe/H] and [$alpha$/Fe]. There are two separate sequences in the [Fe/H] -- [$alpha$/Fe] plane: a high--$alpha$ sequence with stars older than $sim$,8,Gyr and a low--$alpha$ sequence composed of stars with ages covering the whole range of possible ages of stars. We also examine relations between age and kinematic parameters derived from the Gaia DR2 parallax and proper motions. Both the median value and dispersion of the orbital eccentricity are found to increase with age. The vertical angular momentum is found to fairly smoothly decrease with age from 2 to 12,Gyr, with a rate of about $-$50,kpc,km,s$^{-1}$,Gyr$^{-1}$. A full table of the catalog is public available online.
Main sequence turn-off (MSTO) stars have advantages as indicators of Galactic evolution since their ages could be robustly estimated from atmospheric parameters. Hundreds of thousands of MSTO stars have been selected from the LAMOST Galactic sur- vey to study the evolution of the Galaxy, and it is vital to derive accurate stellar parameters. In this work, we select 150 MSTO star candidates from the MSTO stars sample of Xiang that have asteroseismic parameters and determine accurate stellar parameters for these stars combing the asteroseismic parameters deduced from the Kepler photometry and atmospheric parameters deduced from the LAMOST spectra.With this sample, we examine the age deter- mination as well as the contamination rate of the MSTO stars sample. A comparison of age between this work and Xiang shows a mean difference of 0.53 Gyr (7%) and a dispersion of 2.71 Gyr (28%). The results show that 79 of the candidates are MSTO stars, while the others are contaminations from either main sequence or sub-giant stars. The contamination rate for the oldest stars is much higher than that for the younger stars. The main cause for the high contamination rate is found to be the relatively large systematic bias in the LAMOST surface gravity estimates.
104 - Yang Huang 2020
We present a sample of $sim$ 140,000 primary red clump (RC) stars of spectral signal-to-noise ratios higher than 20 from the LAMOST Galactic spectroscopic surveys, selected based on their positions in the metallicity-dependent effective temperature--surface gravity and color--metallicity diagrams, supervised by high-quality $Kepler$ asteroseismology data. The stellar masses and ages of those stars are further determined from the LAMOST spectra, using the Kernel Principal Component Analysis method, trained with thousands of RCs in the LAMOST-$Kepler$ fields with accurate asteroseismic mass measurements. The purity and completeness of our primary RC sample are generally higher than 80 per cent. For the mass and age, a variety of tests show typical uncertainties of 15 and 30 per cent, respectively. Using over ten thousand primary RCs with accurate distance measurements from the parallaxes of Gaia DR2, we re-calibrate the $K_{rm s}$ absolute magnitudes of primary RCs by, for the first time, considering both the metallicity and age dependencies. With the the new calibration, distances are derived for all the primary RCs, with a typical uncertainty of 5--10 per cent, even better than the values yielded by the Gaia parallax measurements for stars beyond 3--4 kpc. The sample covers a significant volume of the Galactic disk of $4 leq R leq 16$ kpc, $|Z| leq 5$ kpc, and $-20 leq phi leq 50^{circ}$. Stellar atmospheric parameters, line-of-sight velocities and elemental abundances derived from the LAMOST spectra and proper motions of Gaia DR2 are also provided for the sample stars. Finally, the selection function of the sample is carefully evaluated in the color-magnitude plane for different sky areas. The sample is publicly available.
The accuracy of masses of pre-main sequence (PMS) stars derived from their locations on the Hertzsprung-Russell Diagram (HRD) can be tested by comparison with accurate and precise masses determined independently. We present 29 single stars in the Taurus star-forming region (SFR) and 3 in the Ophiuchus SFR with masses measured dynamically to a precision of at least $10 %$. Our results include 9 updated mass determinations and 3 that have not had their dynamical masses published before. This list of stars with fundamental, dynamical masses, M$_{dyn}$, is drawn from a larger list of 39 targets in the Taurus SFR and 6 in the Ophiuchus SFR. Placing the stars with accurate and precise dynamical masses on HRDs that do not include internal magnetic fields underestimates the mass compared to M$_{dyn}$ by about $30 %$. Placing them on an HRD that does include magnetic fields yields mass estimates in much better agreement with M$_{dyn}$, with an average difference between M$_{dyn}$ and the estimated track mass of $0.01pm0.02$~msun. The ages of the stars, 3--10 MY on tracks that include magnetic fields, is older than the 1--3 MY indicated by the non-magnetic models. The older ages of T Tauri stars predicted by the magnetic models increase the time available for evolution of their disks and formation of the giant gas exoplanets. The agreement between our M$_{dyn}$ values and the masses on the magnetic field tracks provides indirect support for these older ages.
61 - Roberto Raddi 2020
Motivated by the historical identification of runaway main-sequence (MS) stars of early spectral type at high Galactic latitudes, we test the capability of Gaia at identifying new such stars. We have selected ~2300 sources with Gaia magnitudes of GBP - GRP < 0.05, compatible with the colors of low-extinction MS stars earlier than mid-A spectral type, and obtained low-resolution optical spectroscopy for 48 such stars. By performing detailed photometric and spectroscopic analyses, we derive their atmospheric and physical parameters (effective temperature, surface gravity, radial velocity, interstellar reddening, spectrophotometric distance, mass, radius, luminosity, and age). The comparison between spectrophotometric and parallax-based distances enables us to disentangle the MS candidates from older blue horizontal branch (BHB) candidates. We identify 12 runaway MS candidates, with masses between 2 and 6 Msun. Their trajectories are traced back to the Galactic disc to identify their most recent Galactic plane crossings and the corresponding flight times. All 12 candidates are ejected from the Galactic disc within 2 to 16.5 kpc from the Galactic center and possess flight times that are shorter than their evolutionary ages, compatible with a runaway hypothesis. Three MS candidates have ejection velocities exceeding 450 km/s, thus, appear to challenge the canonical ejection scenarios for late B-type stars. The fastest star of our sample also has a non-negligible Galactic escape probability if its MS nature can be confirmed. We identify 27 BHB candidates, and the two hottest stars in our sample are rare late O and early B type stars of low mass evolving towards the white dwarf cooling sequence.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا