Do you want to publish a course? Click here

Brittle to Quasi-Brittle Transition and Crack Initiation Precursors in Disordered Crystals

166   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Crack initiation emerges due to a combination of elasticity, plasticity, and disorder, and it is heavily dependent on the materials microstructural details. In this paper, we investigate brittle metals with coarse-grained, microstructural disorder that could originate in a materials manufacturing process, such as alloying. As an investigational tool, we consider crack initiation from a surface, ellipsoidal notch: As the radius of curvature at the notch increases, there is a dynamic transition from notch-induced crack initiation to bulk-disorder crack nucleation. We perform extensive and realistic simulations using a phase-field approach coupled to crystal plasticity. Furthermore, the microstructural disorder and notch width are varied in order to study the transition. We identify this transition for various disorder strengths in terms of the damage evolution. Above the transition, we identify detectable precursors to crack initiation that we quantify in terms of the expected stress drops during mode I fracture loading. We discuss ways to observe and analyze this brittle to quasi-brittle transition in experiments.



rate research

Read More

Understanding the strengthening and deformation mechanisms in refractory high-entropy alloys (HEAs), proposed as new high-temperature material, is required for improving their typically insufficient room-temperature ductility. Here, density-functional theory simulations and a continuum mechanics analysis were conducted to systematically investigate the competition between cleavage decohesion and dislocation emission from a crack tip in the body-centered cubic refractory HEAs HfNbTiZr, MoNbTaVW, MoNbTaW, MoNbTiV, and NbTiVZr. This crack-tip competition is evaluated for tensile loading and a totality of 15 crack configurations and slip systems. Our results predict that dislocation plasticity at the crack tip is generally unfavorable -- although the competition is close for some crack orientations, suggesting intrinsic brittleness and low crack-tip fracture toughness in these five HEAs at zero temperature. Fluctuations in local alloy composition, investigated for HfNbTiZr, can locally reduce the resistance to dislocation emission for a slip system relative to the configuration average of that slip system, but do not change the dominant crack-tip response. In the case of single-crystal MoNbTaW, where an experimental, room-temperature fracture-toughness value is available for a crack on a {100} plane, theoretical and experimental results agree favorably. Factors that may limit the agreement are discussed. We survey the effect of material anisotropy on preferred crack tip orientations, which are found to be alloy specific. Mixed-mode loadings are found to shift the competition in favor of cleavage or dislocation nucleation, depending on crack configuration and amplified by the effect of material anisotropy on crack tip stresses.
119 - J. Astrom 2007
We analyze large sets of energy-release data created by stress-induced brittle fracture in a pure sapphire crystal at close to zero temperature where stochastic fluctuations are minimal. The waiting-time distribution follows that observed for fracture in rock and for earthquakes. Despite strong time correlations of the events and the presence of large-event precursors, simple prediction algorithms only succeed in a very weak probabilistic sense. We also discuss prospects for further cryogenic experiments reaching close to single-bond sensitivity and able to investigate the existence of a transition-stress regime.
158 - G. Sainath , B.K. Choudhary 2017
Molecular dynamics simulations have been performed to understand the influence of temperature on the tensile deformation and fracture behavior of $<$111$>$ BCC Fe nanowires. The simulations have been carried out at different temperatures in the range 10-1000 K employing a constant strain rate of $1times$ $10^8$ $s^{-1}$. The results indicate that at low temperatures (10-375 K), the nanowires yield through the nucleation of a sharp crack and fails in brittle manner. On the other hand, nucleation of multiple 1/2$<$111$>$ dislocations at yielding followed by significant plastic deformation leading to ductile failure has been observed at high temperatures in the range 450-1000 K. At the intermediate temperature of 400 K, the nanowire yields through nucleation of crack associated with many mobile 1/2$<$111$>$ and immobile $<$100$>$ dislocations at the crack tip and fails in ductile manner. The ductile-brittle transition observed in $<$111$>$ BCC Fe nanowires is appropriately reflected in the stress-strain behavior and plastic strain at failure. The ductile-brittle transition increases with increasing nanowire size. The change in fracture behavior has been discussed in terms of the relative variations in yield and fracture stresses and change in slip behavior with respect to temperature. Further, the dislocation multiplication mechanism assisted by the kink nucleation from the nanowire surface observed at high temperatures has been presented.
The design and fabrication of phononic crystals (PnCs) hold the key to control the propagation of heat and sound at the nanoscale. However, there is a lack of experimental studies addressing the impact of order/disorder on the phononic properties of PnCs. Here, we present a comparative investigation of the influence of disorder on the hypersonic and thermal properties of two-dimensional PnCs. PnCs of ordered and disordered lattices are fabricated of circular holes with equal filling fractions in free-standing Si membranes. Ultrafast pump and probe spectroscopy (asynchronous optical sampling) and Raman thermometry based on a novel two-laser approach are used to study the phononic properties in the gigahertz (GHz) and terahertz (THz) regime, respectively. Finite element method simulations of the phonon dispersion relation and three-dimensional displacement fields furthermore enable the unique identification of the different hypersonic vibrations. The increase of surface roughness and the introduction of short-range disorder are shown to modify the phonon dispersion and phonon coherence in the hypersonic (GHz) range without affecting the room-temperature thermal conductivity. On the basis of these findings, we suggest a criteria for predicting phonon coherence as a function of roughness and disorder.
We report moment distribution results from a laboratory earthquake fault experiment consisting of sheared elastic plates separated by a narrow gap filled with a two dimensional granular medium. Local measurement of strain displacements of the plates at over 800 spatial points located adjacent to the gap allows direct determination of the moments and their spatial and temporal distributions. We show that events consist of localized, larger brittle motions and spatially-extended, smaller non-brittle events. The non-brittle events have a probability distribution of event moment consistent with an $M^{-3/2}$ power law scaling. Brittle events have a broad, peaked moment distribution and a mean repetition time. As the applied normal force increases, there are more brittle events, and the brittle moment distribution broadens. Our results are consistent with mean field descriptions of statistical models of earthquakes and avalanches.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا