Do you want to publish a course? Click here

Constraining Polarized Foregrounds for EOR Experiments II: Polarization Leakage Simulations in the Avoidance Scheme

124   0   0.0 ( 0 )
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

A critical challenge in the observation of the redshifted 21-cm line is its separation from bright Galactic and extragalactic foregrounds. In particular, the instrumental leakage of polarized foregrounds, which undergo significant Faraday rotation as they propagate through the interstellar medium, may harmfully contaminate the 21-cm power spectrum. We develop a formalism to describe the leakage due to instrumental widefield effects in visibility-based power spectra measured with redundant arrays, extending the delay-spectrum approach presented in Parsons et al. (2012). We construct polarized sky models and propagate them through the instrument model to simulate realistic full-sky observations with the Precision Array to Probe the Epoch of Reionization. We find that the leakage due to a population of polarized point sources is expected to be higher than diffuse Galactic polarization at any $k$ mode for a 30~m reference baseline. For the same reference baseline, a foreground-free window at $k > 0.3 , h$~Mpc$^{-1}$ can be defined in terms of leakage from diffuse Galactic polarization even under the most pessimistic assumptions. If measurements of polarized foreground power spectra or a model of polarized foregrounds are given, our method is able to predict the polarization leakage in actual 21-cm observations, potentially enabling its statistical subtraction from the measured 21-cm power spectrum.

rate research

Read More

Current-generation low frequency interferometers constructed with the objective of detecting the high-redshift 21 cm background, aim to generate power spectra of the brightness-temperature contrast of neutral hydrogen in primordial intergalactic medium. Two-dimensional power spectra (power in Fourier modes parallel and perpendicular to the line of sight) formed from interferometric visibilities have been shown to delineate a boundary between spectrally-smooth foregrounds (known as the wedge) and spectrally-structured 21 cm background emission (the EoR-window). However, polarized foregrounds are known to possess spectral structure due to Faraday rotation, which can leak into the EoR window. In this work, we create and analyze 2D power spectra from the PAPER-32 imaging array in Stokes I, Q, U and V. These allow us to observe and diagnose systematic effects in our calibration at high signal-to-noise within the Fourier space most relevant to EoR experiments. We observe well-defined windows in the Stokes visibilities, with Stokes Q, U and V power spectra sharing a similar wedge shape to that seen in Stokes I. With modest polarization calibration, we see no evidence that polarization calibration errors move power outside the wedge in any Stokes visibility, to the noise levels attained. Deeper integrations will be required to confirm that this behavior persists to the depth required for EoR detection.
Polarized Galactic foregrounds are one of the primary sources of systematic error in measurements of the B-mode polarization of the Cosmic Microwave Background (CMB). Experiments are becoming increasingly sensitive to complexities in the foreground frequency spectra that are not captured by standard parametric models, potentially affecting our ability to efficiently separate out these components. Employing a suite of dust models encompassing a variety of physical effects, we simulate observations of a future seven-band CMB experiment to assess the impact of these complexities on parametric component separation. We identify configurations of frequency bands that minimize the `model errors caused by fitting simple parametric models to more complex `true foreground spectra, which bias the inferred CMB signal. We find that: (a) fits employing a simple two parameter modified blackbody (MBB) dust model tend to produce significant bias in the recovered polarized CMB signal in the presence of physically realistic dust foregrounds; (b) generalized MBB models with three additional parameters reduce this bias in most cases, but non-negligible biases can remain, and can be hard to detect; and (c) line of sight effects, which give rise to frequency decorrelation, and the presence of iron grains are the most problematic complexities in the dust emission for recovering the true CMB signal. More sophisticated simulations will be needed to demonstrate that future CMB experiments can successfully mitigate these more physically realistic dust foregrounds.
We present a catalog of spectral measurements covering a 100-200 MHz band for 32 sources, derived from observations with a 64-antenna deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) in South Africa. For transit telescopes such as PAPER, calibration of the primary beam is a difficult endeavor, and errors in this calibration are a major source of error in the determination of source spectra. In order to decrease reliance on accurate beam calibration, we focus on calibrating sources in a narrow declination range from -46d to -40d. Since sources at similar declinations follow nearly identical paths through the primary beam, this restriction greatly reduces errors associated with beam calibration, yielding a dramatic improvement in the accuracy of derived source spectra. Extrapolating from higher frequency catalogs, we derive the flux scale using a Monte-Carlo fit across multiple sources that includes uncertainty from both catalog and measurement errors. Fitting spectral models to catalog data and these new PAPER measurements, we derive new flux models for Pictor A and 31 other sources at nearby declinations. 90% of these confirm and refine a power-law model for flux density. Of note is the new Pictor A flux model, which is accurate to 1.4% and shows, in contrast to previous models, that between 100 MHz and 2 GHz, the spectrum of Pictor A is consistent with a single power law given by a flux at 150 MHz of 382+/-5.4 Jy, and a spectral index of -0.76+/-0.01. This accuracy represents an order of magnitude improvement over previous measurements in this band, and is limited by the uncertainty in the catalog measurements used to estimate the absolute flux scale. The simplicity and improved accuracy of Pictor As spectrum make it an excellent calibrator for experiments seeking to measure 21cm emission from the Epoch of Reionization.
One of the key science goals for the most sensitive telescopes, both current and upcoming, is the detection of the redshifted 21-cm signal from the Cosmic Dawn and Epoch of Reionization. The success of detection relies on accurate foreground modeling for their removal from data sets. This paper presents the characterization of astrophysical sources in the Lockman Hole region. Using 325 MHz data obtained from the GMRT, a $6^circ times 6^circ$ mosaiced map is produced with an RMS reaching 50 $mu$Jy $mathrm{beam}^{-1}$. A source catalog containing 6186 sources is created, and the Euclidean normalized differential source counts have been derived from it, consistent with previous observations as well as simulations. A detailed comparison of the source catalog is also made with previous findings - at both lower and higher frequencies. The angular power spectrum (APS) of the diffuse Galactic synchrotron emission is determined for three different galactic latitudes using the Tapered Gridded Estimator. The values of the APS lie between $sim$1 mK$^2$ to $sim$100 mK$^2$. Fitting a power law of the form $Aell^{-beta}$ gives values of $A$ and $beta$ varying across the latitudes considered. This paper demonstrates, for the first time, the variation of the power-law index for diffuse emission at very high galactic locations. It follows the same trend that is seen at locations near the galactic plane, thus emphasizing the need for low-frequency observations for developing better models of the diffuse emission.
99 - E. Carretti 2010
The CMB polarization promises to unveil the dawn of time measuring the gravitational wave background emitted by the Inflation. The CMB signal is faint, however, and easily contaminated by the Galactic foreground emission, accurate measurements of which are thus crucial to make CMB observations successful. We review the CMB polarization properties and the current knowledge on the Galactic synchrotron emission, which dominates the foregrounds budget at low frequency. We then focus on the S-Band Polarization All Sky Survey (S-PASS), a recently completed survey of the entire southern sky designed to investigate the Galactic CMB foreground.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا