No Arabic abstract
In this article we present coherent control of above-threshold photoemission from a tungsten nanotip achieving nearly perfect modulation. Depending on the pulse delay between fundamental (1560 nm) and second harmonic (780 nm) pulses of a femtosecond fiber laser at the nanotip, electron emission is significantly enhanced or depressed during temporal overlap. Electron emission is studied as a function of pulse delay, optical near-field intensities, DC bias field, and final photoelectron energy. Under optimized conditions modulation amplitudes of the electron emission of 97.5% are achieved. Experimental observations are discussed in the framework of quantum- pathway interference supported by local density of states (LDOS) simulations.
We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a contrast of the oscillating current signal of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.
Two-color multiphoton emission from polycrystalline tungsten nanotips has been demonstrated using two-color laser fields. The two-color photoemission is assisted by a three-photon multicolor quantum channel, which leads to a twofold increase in quantum efficiency. Weak-field control of two-color multiphoton emission was achieved by changing the efficiency of the quantum channel with pulse delay. The result of this study complements two-color tunneling photoemission in strong fields, and has potential applications for nanowire-based photonic devices. Moreover, the demonstrated two-color multiphoton emission may be important for realizing ultrafast spin-polarized electron sources via optically injected spin current.
Transient near-fields around metallic nanotips drive many applications, including the generation of ultrafast electron pulses and their use in electron microscopy. We have investigated the electron emission from a gold nanotip driven by mid-infrared few-cycle laser pulses. We identify a low-energy peak in the kinetic energy spectrum and study its shift to higher energies with increasing laser intensities from $1.7$ to $3.7cdot10^{11} mathrm{W}/mathrm{cm}^2$. The experimental observation of the upshift of the low-energy peak is compared to a simple model and numerical simulations, which show that the decay of the near-field on a nanometer scale results in non-adiabatic transfer of the ponderomotive potential to the kinetic energy of emitted electrons and in turn to a shift of the peak. We derive an analytic expression for the non-adiabatic ponderomotive shift, which, after the previously found quenching of the quiver motion, completes the understanding of the role of inhomogeneous fields in strong-field photoemission from nanostructures.
We experimentally demonstrate spatiotemporal steering of photoelectron emission in multiphoton above-threshold single ionization of atoms exposed to a phase-controlled orthogonally polarized two-color (OTC) laser pulse. Spatial and energy resolved photoelectron angular distributions are measured as a function of the laser phase, allowing us to look into the fine structures and emission dynamics. The slow and fast photoelectrons, distinguished by the energy larger or smaller than 2Up with Up being the ponderomotive energy of a free electron in the laser field, have distinct spatiotemporal dependences of the laser waveform. The phase-of-phase of the slow electron oscillates as functions of both the energy and emission direction, however, the fast electron present rather flat phase structure which merely depends on its emission direction. Three-dimensional generalized quantum trajectory Monte Carlo simulations are performed to explore the sub-cycle dynamics of the electron emission in the phase-controlled OTC pulse.
Films of the topological insulator Bi2Se3 are grown by molecular beam epitaxy with in-situ reflection high-energy electron diffraction. The films are shown to be high-quality by X-ray reflectivity and diffraction and atomic-force microscopy. Quantum interference control of photocurrents is observed by excitation with harmonically related pulses and detected by terahertz radiation. The injection current obeys the expected excitation irradiance dependence, showing linear dependence on the fundamental pulse irradiance and square-root irradiance dependence of the frequency-doubled optical pulses. The injection current also follows a sinusoidal relative-phase dependence between the two excitation pulses. These results confirm the third-order nonlinear optical origins of the coherently controlled injection current. Experiments are compared to a tight-binding band structure to illustrate the possible optical transitions that occur in creating the injection current.