Do you want to publish a course? Click here

Phase correction for ALMA - Investigating water vapour radiometer scaling:The long-baseline science verification data case study

146   0   0.0 ( 0 )
 Added by Luke Maud
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Atacama Large millimetre/submillimetre Array (ALMA) makes use of water vapour radiometers (WVR), which monitor the atmospheric water vapour line at 183 GHz along the line of sight above each antenna to correct for phase delays introduced by the wet component of the troposphere. The application of WVR derived phase corrections improve the image quality and facilitate successful observations in weather conditions that were classically marginal or poor. We present work to indicate that a scaling factor applied to the WVR solutions can act to further improve the phase stability and image quality of ALMA data. We find reduced phase noise statistics for 62 out of 75 datasets from the long-baseline science verification campaign after a WVR scaling factor is applied. The improvement of phase noise translates to an expected coherence improvement in 39 datasets. When imaging the bandpass source, we find 33 of the 39 datasets show an improvement in the signal-to-noise ratio (S/N) between a few to ~30 percent. There are 23 datasets where the S/N of the science image is improved: 6 by <1%, 11 between 1 and 5%, and 6 above 5%. The higher frequencies studied (band 6 and band 7) are those most improved, specifically datasets with low precipitable water vapour (PWV), <1mm, where the dominance of the wet component is reduced. Although these improvements are not profound, phase stability improvements via the WVR scaling factor come into play for the higher frequency (>450 GHz) and long-baseline (>5km) observations. These inherently have poorer phase stability and are taken in low PWV (<1mm) conditions for which we find the scaling to be most effective. A promising explanation for the scaling factor is the mixing of dry and wet air components, although other origins are discussed. We have produced a python code to allow ALMA users to undertake WVR scaling tests and make improvements to their data.



rate research

Read More

Atacama Large Millimeter/submillimeter Array (ALMA) will be the world largest mm/submm interferometer, and currently the Early Science is ongoing, together with the commissioning and science verification (CSV). Here we present a study of the temporal phase stability of the entire ALMA system from antennas to the correlator. We verified the temporal phase stability of ALMA using data, taken during the last two years of CSV activities. The data consist of integrations on strong point sources (i.e., bright quasars) at various frequency bands, and at various baseline lengths (up to 600 m). From the observations of strong quasars for a long time (from a few tens of minutes, up to an hour), we derived the 2-point Allan Standard Deviation after the atmospheric phase correction using the 183 GHz Water Vapor Radiometer (WVR) installed in each 12 m antenna, and confirmed that the phase stability of all the baselines reached the ALMA specification. Since we applied the WVR phase correction to all the data mentioned above, we also studied the effectiveness of the WVR phase correction at various frequencies, baseline lengths, and weather conditions. The phase stability often improves a factor of 2 - 3 after the correction, and sometimes a factor of 7 improvement can be obtained. However, the corrected data still displays an increasing phase fluctuation as a function of baseline length, suggesting that the dry component (e.g., N2 and O2) in the atmosphere also contributes the phase fluctuation in the data, although the imperfection of the WVR phase correction cannot be ruled out at this moment.
239 - Satoki Matsushita 2014
We present the phase characteristics study of the Atacama Large Millimeter/submillimeter Array (ALMA) long (up to 3 km) baseline, which is the longest baseline tested so far using ALMA. The data consist of long time-scale (10 - 20 minutes) measurements on a strong point source (i.e., bright quasar) at various frequency bands (bands 3, 6, and 7, which correspond to the frequencies of about 88 GHz, 232 GHz, and 336 GHz). Water vapor radiometer (WVR) phase correction works well even at long baselines, and the efficiency is better at higher PWV (>1 mm) condition, consistent with the past studies. We calculate the spatial structure function of phase fluctuation, and display that the phase fluctuation (i.e., rms phase) increases as a function of baseline length, and some data sets show turn-over around several hundred meters to 1 km and being almost constant at longer baselines. This is the first millimeter/submillimeter structure function at this long baseline length, and to show the turn-over of the structure function. Furthermore, the observation of the turn-over indicates that even if the ALMA baseline length extends to the planned longest baseline of 15 km, fringes will be detected at a similar rms phase fluctuation as that at a few km baseline lengths. We also calculate the coherence time using the 3 km baseline data, and the results indicate that the coherence time for band 3 is longer than 400 seconds in most of the data (both in the raw and WVR-corrected data). For bands 6 and 7, WVR-corrected data have about twice longer coherence time, but it is better to use fast switching method to avoid the coherence loss.
80 - M. T. Beltran 2015
The Premiale Project Science and Technology in Italy for the upgraded ALMA Observatory - iALMA has the goal of strengthening the scientific, technological and industrial Italian contribution to the Atacama Large Millimeter/submillimeter Array (ALMA), the largest ground based international infrastructure for the study of the Universe in the microwave. One of the main objectives of the Science Working Group (SWG) inside iALMA, the Work Package 1, is to develop the Italian contribution to the Science Case for the ALMA Band 2 or Band 2+3 receiver. ALMA Band 2 receiver spans from ~67 GHz (bounded by an opaque line complex of ozone lines) up to 90 GHz which overlaps with the lower frequency end of ALMA Band 3. Receiver technology has advanced since the original definition of the ALMA frequency bands. It is now feasible to produce a single receiver which could cover the whole frequency range from 67 GHz to 116 GHz, encompassing Band 2 and Band 3 in a single receiver cartridge, a so called Band 2+3 system. In addition, upgrades of the ALMA system are now foreseen that should double the bandwidth to 16 GHz. The science drivers discussed below therefore also discuss the advantages of these two enhancements over the originally foreseen Band 2 system.
This paper presents the first detailed investigation of the characteristics of mm/submm phase fluctuation and phase correction methods obtained using ALMA with baseline lengths up to ~15 km. Most of the spatial structure functions (SSFs) show that the phase fluctuation increases as a function of baseline length, with a power-law slope of ~0.6. In many cases, we find that the slope becomes shallower (average of ~0.2-0.3) at baseline lengths longer than ~1 km, namely showing a turn-over in SSF. The phase correction method using water vapor radiometers (WVRs) works well, especially for the cases where PWV >1 mm, which reduces the degree of phase fluctuations by a factor of two in many cases. However, phase fluctuations still remain after the WVR phase correction, suggesting the existence of other turbulent constituent that cause the phase fluctuation. This is supported by occasional SSFs that do not exhibit any turn-over; these are only seen when the PWV is low or after WVR phase correction. This means that the phase fluctuation caused by this turbulent constituent is inherently smaller than that caused by water vapor. Since there is no turn-over in the SSF up to the maximum baseline length of ~15 km, this turbulent constituent must have scale height of 10 km or more, and thus cannot be water vapor, whose scale height is around 1 km. This large scale height turbulent constituent is likely to be water ice or a dry component. Excess path length fluctuation after the WVR phase correction at a baseline length of 10 km is large (>200 micron), which is significant for high frequency (>450 GHz or <700 micron) observations. These results suggest the need for an additional phase correction method, such as fast switching, in addition to the WVR phase correction. We simulated the fast switching, and the result suggests that it works well, with shorter cycle times linearly improving the coherence.
We report on laboratory test results of the Compact Water Vapor Radiometer (CWVR) prototype for the NSFs Karl G. Jansky Very Large Array (VLA), a five-channel design centered around the 22 GHz water vapor line. Fluctuations in precipitable water vapor cause fluctuations in atmospheric brightness emission, which are assumed to be proportional to phase fluctuations of the astronomical signal seen by an antenna. Water vapor radiometry consists of using a radiometer to measure variations in the atmospheric brightness emission to correct for the phase fluctuations. The CWVR channel isolation requirement of < -20 dB is met, indicating < 1% power leakage between any two channels. Gain stability tests indicate that Channel 1 needs repair, and that the fluctuations in output counts for Channel 2 to 5 are negatively correlated to the CWVR enclosure ambient temperature, with a change of ~ 405 counts per 1 degree C change in temperature. With temperature correction, the single channel and channel difference gain stability is < 2 x 10^-4, and the observable gain stability is < 2.5 x 10^-4 over t = 2.5 - 10^3 sec, all of which meet the requirements. Overall, the test results indicate that the CWVR meets specifications for dynamic range, channel isolation, and gain stability to be tested on an antenna. Future work consists of building more CWVRs and testing the phase correlations on the VLA antennas to evaluate the use of WVR for not only the VLA, but also the Next Generation Very Large Array (ngVLA).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا