Do you want to publish a course? Click here

Analyzing Reconstruction Artifacts from Arbitrary Incomplete X-ray CT Data

341   0   0.0 ( 0 )
 Added by Eric Todd Quinto
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

This article provides a mathematical analysis of singular (nonsmooth) artifacts added to reconstructions by filtered backprojection (FBP) type algorithms for X-ray CT with arbitrary incomplete data. We prove that these singular artifacts arise from points at the boundary of the data set. Our results show that, depending on the geometry of this boundary, two types of artifacts can arise: object-dependent and object-independent artifacts. Object-dependent artifacts are generated by singularities of the object being scanned and these artifacts can extend along lines. They generalize the streak artifacts observed in limited-angle tomography. Object-independent artifacts, on the other hand, are essentially independent of the object and take one of two forms: streaks on lines if the boundary of the data set is not smooth at a point and curved artifacts if the boundary is smooth locally. We prove that these streak and curve artifacts are the only singular artifacts that can occur for FBP in the continuous case. In addition to the geometric description of artifacts, the article provides characterizations of their strength in Sobolev scale in certain cases. The results of this article apply to the well-known incomplete data problems, including limited-angle and region-of-interest tomography, as well as to unconventional X-ray CT imaging setups that arise in new practical applications. Reconstructions from simulated and real data are analyzed to illustrate our theorems, including the reconstruction that motivated this work---a synchrotron data set in which artifacts appear on lines that have no relation to the object.



rate research

Read More

There is an increasing need to reconstruct objects in four or more dimensions corresponding to space, time and other independent parameters. The best 4D reconstruction algorithms use regularized iterative reconstruction approaches such as model based iterative reconstruction (MBIR), which depends critically on the quality of the prior modeling. Recently, Plug-and-Play methods have been shown to be an effective way to incorporate advanced prior models using state-of-the-art denoising algorithms designed to remove additive white Gaussian noise (AWGN). However, state-of-the-art denoising algorithms such as BM4D and deep convolutional neural networks (CNNs) are primarily available for 2D and sometimes 3D images. In particular, CNNs are difficult and computationally expensive to implement in four or more dimensions, and training may be impossible if there is no associated high-dimensional training data. In this paper, we present Multi-Slice Fusion, a novel algorithm for 4D and higher-dimensional reconstruction, based on the fusion of multiple low-dimensional denoisers. Our approach uses multi-agent consensus equilibrium (MACE), an extension of Plug-and-Play, as a framework for integrating the multiple lower-dimensional prior models. We apply our method to the problem of 4D cone-beam X-ray CT reconstruction for Non Destructive Evaluation (NDE) of moving parts. This is done by solving the MACE equations using lower-dimensional CNN denoisers implemented in parallel on a heterogeneous cluster. Results on experimental CT data demonstrate that Multi-Slice Fusion can substantially improve the quality of reconstructions relative to traditional 4D priors, while also being practical to implement and train.
We describe our submission to the Extreme Value Analysis 2019 Data Challenge in which teams were asked to predict extremes of sea surface temperature anomaly within spatio-temporal regions of missing data. We present a computational framework which reconstructs missing data using convolutional deep neural networks. Conditioned on incomplete data, we employ autoencoder-like models as multivariate conditional distributions from which possible reconstructions of the complete dataset are sampled using imputed noise. In order to mitigate bias introduced by any one particular model, a prediction ensemble is constructed to create the final distribution of extremal values. Our method does not rely on expert knowledge in order to accurately reproduce dynamic features of a complex oceanographic system with minimal assumptions. The obtained results promise reusability and generalization to other domains.
Traditional model-based image reconstruction (MBIR) methods combine forward and noise models with simple object priors. Recent machine learning methods for image reconstruction typically involve supervised learning or unsupervised learning, both of which have their advantages and disadvantages. In this work, we propose a unified supervised-unsupervised (SUPER) learning framework for X-ray computed tomography (CT) image reconstruction. The proposed learning formulation combines both unsupervised learning-based priors (or even simple analytical priors) together with (supervised) deep network-based priors in a unified MBIR framework based on a fixed point iteration analysis. The proposed training algorithm is also an approximate scheme for a bilevel supervised training optimization problem, wherein the network-based regularizer in the lower-level MBIR problem is optimized using an upper-level reconstruction loss. The training problem is optimized by alternating between updating the network weights and iteratively updating the reconstructions based on those weights. We demonstrate the learned SUPER models efficacy for low-dose CT image reconstruction, for which we use the NIH AAPM Mayo Clinic Low Dose CT Grand Challenge dataset for training and testing. In our experiments, we studied different combinations of supervised deep network priors and unsupervised learning-based or analytical priors. Both numerical and visual results show the superiority of the proposed unified SUPER methods over standalone supervised learning-based methods, iterative MBIR methods, and variations of SUPER obtained via ablation studies. We also show that the proposed algorithm converges rapidly in practice.
We develop a paradigm using microlocal analysis that allows one to characterize the visible and added singularities in a broad range of incomplete data tomography problems. We give precise characterizations for photo- and thermoacoustic tomography and Sonar, and provide artifact reduction strategies. In particular, our theorems show that it is better to arrange Sonar detectors so that the boundary of the set of detectors does not have corners and is smooth. To illustrate our results, we provide reconstructions from synthetic spherical mean data as well as from experimental photoacoustic data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا