Do you want to publish a course? Click here

Nonlinear Stability of Relativistic Vortex Sheets in Three-Dimensional Minkowski Spacetime

185   0   0.0 ( 0 )
 Added by Gui-Qiang G. Chen
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We are concerned with the nonlinear stability of vortex sheets for the relativistic Euler equations in three-dimensional Minkowski spacetime. This is a nonlinear hyperbolic problem with a characteristic free boundary. In this paper, we introduce a new symmetrization by choosing appropriate functions as primary unknowns. A necessary and sufficient condition for the weakly linear stability of relativistic vortex sheets is obtained by analyzing the roots of the Lopatinskiu{i} determinant associated to the constant coefficient linearized problem. Under this stability condition, we show that the variable coefficient linearized problem obeys an energy estimate with a loss of derivatives. The construction of certain weight functions plays a crucial role in absorbing error terms caused by microlocalization. Based on the weakly linear stability result, we establish the existence and nonlinear stability of relativistic vortex sheets under small initial perturbations by a Nash--Moser iteration scheme.



rate research

Read More

The linear stability with variable coefficients of the vortex sheets for the two-dimensional compressible elastic flows is studied. As in our earlier work on the linear stability with constant coefficients, the problem has a free boundary which is characteristic, and also the Kreiss-Lopatinskii condition is not uniformly satisfied. In addition, the roots of the Lopatinskii determinant of the para-linearized system may coincide with the poles of the system. Such a new collapsing phenomenon causes serious difficulties when applying the bicharacteristic extension method. Motivated by our method introduced in the constant-coefficient case, we perform an upper triangularization to the para-linearized system to separate the outgoing mode into a closed form where the outgoing mode only appears at the leading order. This procedure results in a gain of regularity for the outgoing mode which allows us to overcome the loss of regularity of the characteristic components at the poles, and hence to close all the energy estimates. We find that, analogous to the constant coefficient case, elasticity generates notable stabilization effects, and there are additional stable subsonic regions compared with the isentropic Euler flows. Moreover, since our method does not rely on the construction of the bicharacterisic curves, it can also be applied to other fluid models such as the non-isentropic Euler equations and the MHD equations.
132 - Ling-Bing He , Li Xu , Pin Yu 2016
We construct and study global solutions for the 3-dimensional incompressible MHD systems with arbitrary small viscosity. In particular, we provide a rigorous justification for the following dynamical phenomenon observed in many contexts: the solution initially behaves like non-dispersive waves and the shape of the solution persists for a very long time (proportional to the Reynolds number), thereafter, the solution will be damped due to the long-time accumulation of the diffusive effects, eventually, the total energy of the system becomes extremely small compared to the viscosity so that the diffusion takes over and the solution afterwards decays fast in time. We do not assume any condition on the symmetry or on the vorticity. The size of data and the a priori estimates do not depend on viscosity. The proof is builded upon a novel use of the basic energy identity and a geometric study of the characteristic hypersurfaces. The approach is partly inspired by Christodoulou-Klainermans proof of the nonlinear stability of Minkowski space in general relativity.
66 - Peter Hintz , Andras Vasy 2017
We study the nonlinear stability of the $(3+1)$-dimensional Minkowski spacetime as a solution of the Einstein vacuum equation. Similarly to our previous work on the stability of cosmological black holes, we construct the solution of the nonlinear initial value problem using an iteration scheme in which we solve a linearized equation globally at each step; we use a generalized harmonic gauge and implement constraint damping to fix the geometry of null infinity. The linear analysis is largely based on energy and vector field methods originating in work by Klainerman. The weak null condition of Lindblad and Rodnianski arises naturally as a nilpotent coupling of certain metric components in a linear model operator at null infinity. Upon compactifying $mathbb{R}^4$ to a manifold with corners, with boundary hypersurfaces corresponding to spacelike, null, and timelike infinity, we show, using the framework of Melroses b-analysis, that polyhomogeneous initial data produce a polyhomogeneous spacetime metric. Finally, we relate the Bondi mass to a logarithmic term in the expansion of the metric at null infinity and prove the Bondi mass loss formula.
We investigate a steady planar flow of an ideal fluid in a (bounded or unbounded) domain $Omegasubset mathbb{R}^2$. Let $kappa_i ot=0$, $i=1,ldots, m$, be $m$ arbitrary fixed constants. For any given non-degenerate critical point $mathbf{x}_0=(x_{0,1},ldots,x_{0,m})$ of the Kirchhoff-Routh function defined on $Omega^m$ corresponding to $(kappa_1,ldots, kappa_m)$, we construct a family of stationary planar flows with vortex sheets that have large vorticity amplitude and are perturbations of small circles centered near $x_i$, $i=1,ldots,m$. The proof is accomplished via the implicit function theorem with suitable choice of function spaces. This seems to be the first nontrivial result on the existence of stationary vortex sheets in domains.
We study minimizers of a Gross-Pitaevskii energy describing a two-component Bose-Einstein condensate set into rotation. We consider the case of segregation of the components in the Thomas-Fermi regime, where a small parameter $epsilon$ conveys a singular perturbation. We estimate the energy as a term due to a perimeter minimization and a term due to rotation. In particular, we prove a new estimate concerning the error of a Modica Mortola type energy away from the interface. For large rotations, we show that the interface between the components gets long, which is a first indication towards vortex sheets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا