No Arabic abstract
Context: Large cavities in disks are important testing grounds for the mechanisms proposed to drive disk evolution and dispersion, such as dynamical clearing by planets and photo-evaporation. Aims: We aim to resolve the large cavity in the disk around HD 34282, such as has been predicted by previous studies modeling the spectral energy distribution Methods: Using ALMA band 7 observations we study HD 34282 with a spatial resolution of 0.10arcsec x 0.17arcsec at 345 GHz. Results: We resolve the disk around HD 34282 into a ring between 0.24arcsec and 1.15arcsec (78 and 374 au adopting a distance of 325 pc). The emission in this ring shows azimuthal asymmetry centered at a radial distance of 0.46arcsec and a position angle of 135 degrees and an azimuthal FWHM of 51 degrees. We detect CO emission both inside the disk cavity and as far out as 2.7 times the radial extent of the dust emission. Conclusions: Both the large disk cavity and the azimuthal structure in the disk around HD 34282 can be explained by the presence of a 50 jupiter mass brown dwarf companion at a separation of ~ 0.1arcsec.
Context: Gaps, cavities and rings in circumstellar disks are signposts of disk evolution and planet-disk interactions. We follow the recent suggestion that Herbig Ae/Be disks with a flared disk harbour a cavity, and investigate the disk around HD~97048. Aims: We aim to resolve the 34$pm$ 4 au central cavity predicted by Maaskant et al. (2013) and to investigate the structure of the disk. Methods: We image the disk around HD~97048 using ALMA at 0.85~mm and 2.94~mm, and ATCA (multiple frequencies) observations. Our observations also include the 12CO J=1-0, 12CO J=3-2 and HCO+ J=4-3 emission lines. Results: A central cavity in the disk around HD~97048 is resolved with a 40-46 au radius. Additional radial structure present in the surface brightness profile can be accounted for either by an opacity gap at ~90 au or by an extra emitting ring at ~150 au. The continuum emission tracing the dust in the disk is detected out to 355 au. The 12CO J=3-2 disk is detected 2.4 times farther out. The 12CO emission can be traced down to $approx$ 10 au scales. Non-Keplerian kinematics are detected inside the cavity via the HCO+ J=4-3 velocity map. The mm spectral index measured from ATCA observations suggests that grain growth has occurred in the HD~97048 disk. Finally, we resolve a highly inclined disk out to 150 au around the nearby 0.5~$M_{odot}$ binary ISO-ChaI 126. Conclusions: The data presented here reveal a cavity in the disk of HD 97048, and prominent radial structure in the surface brightness. The cavity size varies for different continuum frequencies and gas tracers. The gas inside the cavity follows non-Keplerian kinematics seen in HCO+ emission. The variable cavity size along with the kinematical signature suggests the presence of a substellar companion or massive planet inside the cavity.
HD 50138 is a B[e] star surrounded by a large amount of circumstellar gas and dust. Its spectrum shows characteristics which may indicate either a pre- or a post-main-sequence system. Mapping the kinematics of the gas in the inner few au of the system contributes to a better understanding of its physical nature. We present the first high spatial and spectral resolution interferometric observations of the Br-gamma line of HD~50138, obtained with VLTI/AMBER. The line emission originates from a region more compact (up to 3 au) than the continuum-emitting region. Blue- and red-shifted emission originates from the two different hemispheres of an elongated structure perpendicular to the polarization angle. The velocity of the emitting medium decreases radially. An overall offset along the NW direction between the line- and continuum-emitting regions is observed. We compare the data with a geometric model of a thin Keplerian disk and a spherical halo on top of a Gaussian continuum. Most of the data are well reproduced by this model, except for the variability, the global offset and the visibility at the systemic velocity. The evolutionary state of the system is discussed; most diagnostics are ambiguous and may point either to a post-main-sequence or a pre-main-sequence nature.
The disk around the Herbig Ae/Be star HD 100546 has been extensively studied and it is one of the systems for which there are observational indications of ongoing and/or recent planet formation. However, up until now no resolved image of the millimeter dust emission or the gas has been published. We present the first resolved images of the disk around HD 100546 obtained in Band 7 with the ALMA observatory. The CO (3-2) image reveals a gas disk that extends out to 350 au radius at the 3-sigma level. Surprisingly, the 870um dust continuum emission is compact (radius <60 au) and asymmetric. The dust emission is well matched by a truncated disk with outer radius of $approx$50 au. The lack of millimeter-sized particles outside the 60 au is consistent with radial drift of particles of this size. The protoplanet candidate, identified in previous high-contrast NACO/VLT L observations, could be related to the sharp outer edge of the millimeter-sized particles. Future higher angular resolution ALMA observations are needed to determine the detailed properties of the millimeter emission and the gas kinematics in the inner region (<2arcsec). Such observations could also reveal the presence of a planet through the detection of circumplanetary disk material.
We present $H$-band near-infrared polarimetric imaging observations of the F5V star HD~157587 obtained with the Gemini Planet Imager (GPI) that reveal the debris disk as a bright ring structure at a separation of $sim$80$-$100~AU. The new GPI data complement recent HST/STIS observations that show the disk extending out to over 500~AU. The GPI image displays a strong asymmetry along the projected minor axis as well as a fainter asymmetry along the projected major axis. We associate the minor and major axis asymmetries with polarized forward scattering and a possible stellocentric offset, respectively. To constrain the disk geometry we fit two separate disk models to the polarized image, each using a different scattering phase function. Both models favor a disk inclination of $sim 70degr$ and a $1.5pm0.6$ AU stellar offset in the plane of the sky along the projected major axis of the disk. We find that the stellar offset in the disk plane, perpendicular to the projected major axis is degenerate with the form of the scattering phase function and remains poorly constrained. The disk is not recovered in total intensity due in part to strong adaptive optics residuals, but we recover three point sources. Considering the systems proximity to the galactic plane and the point sources positions relative to the disk, we consider it likely that they are background objects and unrelated to the disks offset from the star.
The disk atmosphere is one of the fundamental elements of theoretical models of a protoplanetary disk. However, the direct observation of the warm gas (>> 100 K) at large radius of a disk (>> 10 AU) is challenging, because the line emission from warm gas in a disk is usually dominated by the emission from an inner disk. Our goal is to detect the warm gas in the disk atmosphere well beyond 10 AU from a central star in a nearby disk system of the Herbig Be star HD 100546. We measured the excitation temperature of the vibrational transition of CO at incremental radii of the disk from the central star up to 50 AU, using an adaptive optics system combined with the high-resolution infrared spectrograph CRIRES at the VLT. The observation successfully resolved the line emission with 0.1 angular resolution, which is 10 AU at the distance of HD 100546. Population diagrams were constructed at each location of the disk, and compared with the models calculated taking into account the optical depth effect in LTE condition. The excitation temperature of CO is 400-500 K or higher at 50 AU away from the star, where the blackbody temperature in equilibrium with the stellar radiation drops as low as 90 K. This is unambiguous evidence of a warm disk atmosphere far away from the central star.