Do you want to publish a course? Click here

Cycle-centrality in complex networks

60   0   0.0 ( 0 )
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Networks are versatile representations of the interactions between entities in complex systems. Cycles on such networks represent feedback processes which play a central role in system dynamics. In this work, we introduce a measure of the importance of any individual cycle, as the fraction of the total information flow of the network passing through the cycle. This measure is computationally cheap, numerically well-conditioned, induces a centrality measure on arbitrary subgraphs and reduces to the eigenvector centrality on vertices. We demonstrate that this measure accurately reflects the impact of events on strategic ensembles of economic sectors, notably in the US economy. As a second example, we show that in the protein-interaction network of the plant Arabidopsis thaliana, a model based on cycle-centrality better accounts for pathogen activity than the state-of-art one. This translates into pathogen-targeted-proteins being concentrated in a small number of triads with high cycle-centrality. Algorithms for computing the centrality of cycles and subgraphs are available for download.



rate research

Read More

There is an ever-increasing interest in investigating dynamics in time-varying graphs (TVGs). Nevertheless, so far, the notion of centrality in TVG scenarios usually refers to metrics that assess the relative importance of nodes along the temporal evolution of the dynamic complex network. For some TVG scenarios, however, more important than identifying the central nodes under a given node centrality definition is identifying the key time instants for taking certain actions. In this paper, we thus introduce and investigate the notion of time centrality in TVGs. Analogously to node centrality, time centrality evaluates the relative importance of time instants in dynamic complex networks. In this context, we present two time centrality metrics related to diffusion processes. We evaluate the two defined metrics using both a real-world dataset representing an in-person contact dynamic network and a synthetically generated randomized TVG. We validate the concept of time centrality showing that diffusion starting at the best classified time instants (i.e. the most central ones), according to our metrics, can perform a faster and more efficient diffusion process.
We analyze a network formation game in a strategic setting where payoffs of individuals depend only on their immediate neighbourhood. We call these payoffs as localized payoffs. In this game, the payoff of each individual captures (1) the gain from immediate neighbors, (2) the bridging benefits, and (3) the cost to form links. This implies that the payoff of each individual can be computed using only its single-hop neighbourhood information. Based on this simple model of network formation, our study explores the structure of networks that form, satisfying one or both of the properties, namely, pairwise stability and efficiency. We analytically prove the pairwise stability of several interesting network structures, notably, the complete bi-partite network, complete equi-k-partite network, complete network and cycle network, under various configurations of the model. We validate and extend these results through extensive simulations. We characterize topologies of efficient networks by drawing upon classical results from extremal graph theory and discover that the Turan graph (or the complete equi-bi-partite network) is the unique efficient network under many configurations of parameters. We examine the tradeoffs between topologies of pairwise stable networks and efficient networks using the notion of price of stability, which is the ratio of the sum of payoffs of the players in an optimal pairwise stable network to that of an efficient network. Interestingly, we find that price of stability is equal to 1 for almost all configurations of parameters in the proposed model; and for the rest of the configurations of the parameters, we obtain a lower bound of 0.5 on the price of stability. This leads to another key insight of this paper: under mild conditions, efficient networks will form when strategic individuals choose to add or delete links based on only localized payoffs.
Complex networks are characterized by heterogeneous distributions of the degree of nodes, which produce a large diversification of the roles of the nodes within the network. Several centrality measures have been introduced to rank nodes based on their topological importance within a graph. Here we review and compare centrality measures based on spectral properties of graph matrices. We shall focus on PageRank, eigenvector centrality and the hub/authority scores of HITS. We derive simple relations between the measures and the (in)degree of the nodes, in some limits. We also compare the rankings obtained with different centrality measures.
Competition networks are formed via adversarial interactions between actors. The Dynamic Competition Hypothesis predicts that influential actors in competition networks should have a large number of common out-neighbors with many other nodes. We empirically study this idea as a centrality score and find the measure predictive of importance in several real-world networks including food webs, conflict networks, and voting data from Survivor.
As a fundamental challenge in vast disciplines, link prediction aims to identify potential links in a network based on the incomplete observed information, which has broad applications ranging from uncovering missing protein-protein interaction to predicting the evolution of networks. One of the most influential methods rely on similarity indices characterized by the common neighbors or its variations. We construct a hidden space mapping a network into Euclidean space based solely on the connection structures of a network. Compared with real geographical locations of nodes, our reconstructed locations are in conformity with those real ones. The distances between nodes in our hidden space could serve as a novel similarity metric in link prediction. In addition, we hybrid our hidden space method with other state-of-the-art similarity methods which substantially outperforms the existing methods on the prediction accuracy. Hence, our hidden space reconstruction model provides a fresh perspective to understand the network structure, which in particular casts a new light on link prediction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا