Do you want to publish a course? Click here

Zero-Shot Fine-Grained Classification by Deep Feature Learning with Semantics

77   0   0.0 ( 0 )
 Added by Zhiwu Lu
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task due to two main issues: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e. zero-shot fine-grained classification. In the first feature learning phase, we finetune deep convolutional neural networks using hierarchical semantic structure among fine-grained classes to extract discriminative deep visual features. Meanwhile, a domain adaptation structure is induced into deep convolutional neural networks to avoid domain shift from training data to test data. In the second label inference phase, a semantic directed graph is constructed over attributes of fine-grained classes. Based on this graph, we develop a label propagation algorithm to infer the labels of images in the unseen classes. Experimental results on two benchmark datasets demonstrate that our model outperforms the state-of-the-art zero-shot learning models. In addition, the features obtained by our feature learning model also yield significant gains when they are used by other zero-shot learning models, which shows the flexility of our model in zero-shot fine-grained classification.



rate research

Read More

87 - Zhong Ji , Xuejie Yu , Yunlong Yu 2019
Zero-Shot Classification (ZSC) equips the learned model with the ability to recognize the visual instances from the novel classes via constructing the interactions between the visual and the semantic modalities. In contrast to the traditional image classification, ZSC is easily suffered from the class-imbalance issue since it is more concerned with the class-level knowledge transfer capability. In the real world, the class samples follow a long-tailed distribution, and the discriminative information in the sample-scarce seen classes is hard to be transferred to the related unseen classes in the traditional batch-based training manner, which degrades the overall generalization ability a lot. Towards alleviating the class imbalance issue in ZSC, we propose a sample-balanced training process to encourage all training classes to contribute equally to the learned model. Specifically, we randomly select the same number of images from each class across all training classes to form a training batch to ensure that the sample-scarce classes contribute equally as those classes with sufficient samples during each iteration. Considering that the instances from the same class differ in class representativeness, we further develop an efficient semantics-guided feature fusion model to obtain discriminative class visual prototype for the following visual-semantic interaction process via distributing different weights to the selected samples based on their class representativeness. Extensive experiments on three imbalanced ZSC benchmark datasets for both the Traditional ZSC (TZSC) and the Generalized ZSC (GZSC) tasks demonstrate our approach achieves promising results especially for the unseen categories those are closely related to the sample-scarce seen categories.
Traditional fine-grained image classification generally requires abundant labeled samples to deal with the low inter-class variance but high intra-class variance problem. However, in many scenarios we may have limited samples for some novel sub-categories, leading to the fine-grained few shot learning (FG-FSL) setting. To address this challenging task, we propose a novel method named foreground object transformation (FOT), which is composed of a foreground object extractor and a posture transformation generator. The former aims to remove image background, which tends to increase the difficulty of fine-grained image classification as it amplifies the intra-class variance while reduces inter-class variance. The latter transforms the posture of the foreground object to generate additional samples for the novel sub-category. As a data augmentation method, FOT can be conveniently applied to any existing few shot learning algorithm and greatly improve its performance on FG-FSL tasks. In particular, in combination with FOT, simple fine-tuning baseline methods can be competitive with the state-of-the-art methods both in inductive setting and transductive setting. Moreover, FOT can further boost the performances of latest excellent methods and bring them up to the new state-of-the-art. In addition, we also show the effectiveness of FOT on general FSL tasks.
We investigate learning feature-to-feature translator networks by alternating back-propagation as a general-purpose solution to zero-shot learning (ZSL) problems. It is a generative model-based ZSL framework. In contrast to models based on generative adversarial networks (GAN) or variational autoencoders (VAE) that require auxiliary networks to assist the training, our model consists of a single conditional generator that maps class-level semantic features and Gaussian white noise vector accounting for instance-level latent factors to visual features, and is trained by maximum likelihood estimation. The training process is a simple yet effective alternating back-propagation process that iterates the following two steps: (i) the inferential back-propagation to infer the latent factors of each observed example, and (ii) the learning back-propagation to update the model parameters. We show that, with slight modifications, our model is capable of learning from incomplete visual features for ZSL. We conduct extensive comparisons with existing generative ZSL methods on five benchmarks, demonstrating the superiority of our method in not only ZSL performance but also convergence speed and computational cost. Specifically, our model outperforms the existing state-of-the-art methods by a remarkable margin up to 3.1% and 4.0% in ZSL and generalized ZSL settings, respectively.
New categories can be discovered by transforming semantic features into synthesized visual features without corresponding training samples in zero-shot image classification. Although significant progress has been made in generating high-quality synthesized visual features using generative adversarial networks, guaranteeing semantic consistency between the semantic features and visual features remains very challenging. In this paper, we propose a novel zero-shot learning approach, GAN-CST, based on class knowledge to visual feature learning to tackle the problem. The approach consists of three parts, class knowledge overlay, semi-supervised learning and triplet loss. It applies class knowledge overlay (CKO) to obtain knowledge not only from the corresponding class but also from other classes that have the knowledge overlay. It ensures that the knowledge-to-visual learning process has adequate information to generate synthesized visual features. The approach also applies a semi-supervised learning process to re-train knowledge-to-visual model. It contributes to reinforcing synthesized visual features generation as well as new category prediction. We tabulate results on a number of benchmark datasets demonstrating that the proposed model delivers superior performance over state-of-the-art approaches.
Fine-grained classification is a challenging problem, due to subtle differences among highly-confused categories. Most approaches address this difficulty by learning discriminative representation of individual input image. On the other hand, humans can effectively identify contrastive clues by comparing image pairs. Inspired by this fact, this paper proposes a simple but effective Attentive Pairwise Interaction Network (API-Net), which can progressively recognize a pair of fine-grained images by interaction. Specifically, API-Net first learns a mutual feature vector to capture semantic differences in the input pair. It then compares this mutual vector with individual vectors to generate gates for each input image. These distinct gate vectors inherit mutual context on semantic differences, which allow API-Net to attentively capture contrastive clues by pairwise interaction between two images. Additionally, we train API-Net in an end-to-end manner with a score ranking regularization, which can further generalize API-Net by taking feature priorities into account. We conduct extensive experiments on five popular benchmarks in fine-grained classification. API-Net outperforms the recent SOTA methods, i.e., CUB-200-2011 (90.0%), Aircraft(93.9%), Stanford Cars (95.3%), Stanford Dogs (90.3%), and NABirds (88.1%).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا