No Arabic abstract
We present a multi-wavelength study to probe the star formation (SF) processes on a larger scale (~1.05 deg x 0.56 deg) around the S242 site. The S242 molecular cloud is depicted in a velocity range from -3.25 to 4.55 km/s and has spatially elongated appearance. Based on the virial analysis, the cloud is prone to gravitational collapse. The cloud harbors an elongated filamentary structure (EFS; length ~25 pc) evident in the Herschel column density map and the EFS has an observed mass per unit length of ~200 M_sun/pc exceeding the critical value of ~16 M_sun/pc (at T = 10 K). The EFS contains a chain of Herschel clumps (M_clump ~150 to 1020 M_sun), revealing the evidence of fragmentation along its length. The most massive clumps are observed at both the EFS ends, while the S242 HII region is located at one EFS end. Based on the radio continuum maps at 1.28 and 1.4 GHz, the S242 HII region is ionized by a B0.5V - B0V type star and has a dynamical age of ~0.5 Myr. The photometric 1 - 5 microns data analysis of point-like sources traces young stellar objects (YSOs) toward the EFS and the clusters of YSOs are exclusively found at both the EFS ends, revealing the SF activities. Considering the spatial presence of massive clumps and YSO clusters at both the EFS ends, the observed results are consistent with the prediction of a SF scenario of the end-dominated collapse driven by the higher accelerations of gas.
Does star formation proceed in the same way in large spirals such as the Milky Way and in smaller chemically younger galaxies? Earlier work suggests a more rapid transformation of H$_2$ into stars in these objects but (1) a doubt remains about the validity of the H$_2$ mass estimates and (2) there is currently no explanation for why star formation should be more efficient. M~33, a local group spiral with a mass $sim 10$% and a metallicity half that of the Galaxy, represents a first step towards the metal poor Dwarf Galaxies. We have searched for molecular clouds in the outer disk of M~33 and present here a set of detections of both $^{12}$CO and $^{13}$CO, including the only detections (for both lines) beyond the R$_{25}$ radius in a subsolar metallicity galaxy. The spatial resolution enables mass estimates for the clouds and thus a measure of the $N({rm H}_2) / I_{rm CO}$ ratio, which in turn enables a more reliable calculation of the H$_2$ mass. Our estimate for the outer disk of M~33 is $N({rm H}_2) / I_{rm CO(1-0)} sim 5 times 10^{20} ,{rm cm^{-2}/(K{rm km s^{-1}})}$ with an estimated uncertainty of a factor $le 2$. While the $^{12/13}$CO line ratios do not provide a reliable measure of $N({rm H}_2) / I_{rm CO}$, the values we find are slightly greater than Galactic and corroborate a somewhat higher $N({rm H}_2) / I_{rm CO}$ value. Comparing the CO observations with other tracers of the interstellar medium, no reliable means of predicting where CO would be detected was identified. In particular, CO detections were often not directly on local HI or FIR or H$alpha$ peaks, although generally in regions with FIR emission and high HI column density. The results presented here provide support for the quicker transformation of H$_2$ into stars in M~33 than in large local universe spirals.
We performed a multi-wavelength study toward the filamentary cloud G47.06+0.26 to investigate the gas kinematics and star formation. We present the 12CO (J=1-0), 13CO (J=1-0) and C18O (J=1-0) observations of G47.06+0.26 obtained with the Purple Mountain Observation (PMO) 13.7 m radio telescope to investigate the detailed kinematics of the filament. The 12CO (J=1-0) and 13CO (J=1-0) emission of G47.06+0.26 appear to show a filamentary structure. The filament extends about 45 arcmin (58.1 pc) along the east-west direction. The mean width is about 6.8 pc, as traced by the 13CO (J=1-0) emission. G47.06+0.26 has a linear mass density of about 361.5 Msun/pc. The external pressure (due to neighboring bubbles and H II regions) may help preventing the filament from dispersing under the effects of turbulence. From the velocity-field map, we discern a velocity gradient perpendicular to G47.06+0.26. From the Bolocam Galactic Plane Survey (BGPS) catalog, we found nine BGPS sources in G47.06+0.26, that appear to these sources have sufficient mass to form massive stars. We obtained that the clump formation efficiency (CFE) is about 18% in the filament. Four infrared bubbles were found to be located in, and adjacent to, G47.06+0.26. Particularly, infrared bubble N98 shows a cometary structure. CO molecular gas adjacent to N98 also shows a very intense emission. H II regions associated with infrared bubbles can inject the energy to surrounding gas. We calculated the kinetic energy, ionization energy, and thermal energy of two H II regions in G47.06+0.26. From the GLIMPSE I catalog, we selected some Class I sources with an age of about 100000 yr, which are clustered along the filament. The feedback from the H II regions may cause the formation of a new generation of stars in filament G47.06+0.26.
Using hydrodynamical simulations of a Milky Way-like galaxy, reaching 4.6 pc resolution, we study how the choice of star formation criteria impacts both galactic and Giant Molecular Clouds (GMC) scales. We find that using a turbulent, self-gravitating star formation criteria leads to an increase in the fraction of gas with densities between 10 and 10$^4$ cm$^{-3}$ when compared with a simulation using a molecular star formation method, despite both having nearly identical gaseous and stellar morphologies. Furthermore, we find that the site of star formation is effected with the the former tending to only produce stars in regions of very high density ($gt 10$ cm$^{-3}$) gas while the latter forms stars along the entire length of its spiral arms. The properties of GMCs are impacted by the choice of star formation criteria with the former method producing larger clouds. Despite the differences we find that the relationships between clouds properties, such as the Larson relations, remain unaffected. Finally, the scatter in the measured star formation efficiency per free-fall time of GMCs remains present with both methods and is thus set by other factors.
Star formation is a fundamental process for galactic evolution. One issue over the last several decades has been determining whether star formation is induced by external triggers or is self-regulated in a closed system. The role of an external trigger, which can effectively collect mass in a small volume, has attracted particular attention in connection with the formation of massive stellar clusters, which in the extreme may lead to starbursts. Recent observations have revealed massive cluster formation triggered by cloud-cloud collisions in nearby interacting galaxies, including the Magellanic system and the Antennae Galaxies as well as almost all well-known high-mass star-forming regions such as RCW 120, M20, M42, NGC 6334, etc., in the Milky Way. Theoretical efforts are laying the foundation for the mass compression that causes massive cluster/star formation. Here, we review the recent progress on cloud-cloud collisions and triggered star-cluster formation and discuss the future prospects for this area of research.
We investigate the formation and evolution of giant molecular clouds (GMCs) by the collision of convergent warm neutral medium (WNM) streams in the interstellar medium, in the presence of magnetic fields and ambipolar diffusion (AD), focusing on the evolution of the star formation rate (SFR) and efficiency (SFE), as well as of the mass-to-magnetic-flux ratio (M2FR) in the forming clouds. We find that: 1) Clouds formed by supercritical inflow streams proceed directly to collapse, while clouds formed by subcritical streams first contract and then re-expand, oscillating on the scale of tens of Myr. 2) Our suite of simulations with initial magnetic field strength of 2, 3, and 4 $muG$ show that only supercritical or marginal critical streams lead to reasonable star forming rates. 3) The GMCs M2FR is a generally increasing function of time, whose growth rate depends on the details of how mass is added to the GMC from the WNM. 4) The M2FR is a highly fluctuating function of position in the clouds. 5) In our simulations, the SFE approaches stationarity, because mass is added to the GMC at a similar rate at which it converts mass to stars. In such an approximately stationary regime, the SFE provides a proxy of the supercritical mass fraction in the cloud. 6) We observe the occurrence of buoyancy of the low-M2FR regions within the gravitationally-contracting GMCs, so that the latter naturally segregate into a high-density, high-M2FR core and a low-density, low-M2FR envelope, without the intervention of AD. (Abridged)