Do you want to publish a course? Click here

Gas kinematics and star formation in the filamentary molecular cloud G47.06+0.26

144   0   0.0 ( 0 )
 Added by Jin Long Xu
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We performed a multi-wavelength study toward the filamentary cloud G47.06+0.26 to investigate the gas kinematics and star formation. We present the 12CO (J=1-0), 13CO (J=1-0) and C18O (J=1-0) observations of G47.06+0.26 obtained with the Purple Mountain Observation (PMO) 13.7 m radio telescope to investigate the detailed kinematics of the filament. The 12CO (J=1-0) and 13CO (J=1-0) emission of G47.06+0.26 appear to show a filamentary structure. The filament extends about 45 arcmin (58.1 pc) along the east-west direction. The mean width is about 6.8 pc, as traced by the 13CO (J=1-0) emission. G47.06+0.26 has a linear mass density of about 361.5 Msun/pc. The external pressure (due to neighboring bubbles and H II regions) may help preventing the filament from dispersing under the effects of turbulence. From the velocity-field map, we discern a velocity gradient perpendicular to G47.06+0.26. From the Bolocam Galactic Plane Survey (BGPS) catalog, we found nine BGPS sources in G47.06+0.26, that appear to these sources have sufficient mass to form massive stars. We obtained that the clump formation efficiency (CFE) is about 18% in the filament. Four infrared bubbles were found to be located in, and adjacent to, G47.06+0.26. Particularly, infrared bubble N98 shows a cometary structure. CO molecular gas adjacent to N98 also shows a very intense emission. H II regions associated with infrared bubbles can inject the energy to surrounding gas. We calculated the kinetic energy, ionization energy, and thermal energy of two H II regions in G47.06+0.26. From the GLIMPSE I catalog, we selected some Class I sources with an age of about 100000 yr, which are clustered along the filament. The feedback from the H II regions may cause the formation of a new generation of stars in filament G47.06+0.26.



rate research

Read More

We performed a multiwavelength study toward infrared dark cloud (IRDC) G34.43+0.24. New maps of 13CO $J$=1-0 and C18}O J=1-0 were obtained from the Purple Mountain Observatory (PMO) 13.7 m radio telescope. At 8 um (Spitzer - IRAC), IRDC G34.43+0.24 appears to be a dark filament extended by 18 arcmin along the north-south direction. Based on the association with the 870 um and C18O J=1-0 emission, we suggest that IRDC G34.43+0.24 should not be 18 arcmin in length, but extend by 34 arcmin. IRDC G34.43+0.24 contains some massive protostars, UC H II regions, and infrared bubbles. The spatial extend of IRDC G34.43+0.24 is about 37 pc assuming a distance of 3.7 kpc. IRDC G34.43+0.24 has a linear mass density of 1.6*10^{3} M_{sun} pc^{-1}, which is roughly consistent with its critical mass to length ratio. The turbulent motion may help stabilizing the filament against the radial collapse. Both infrared bubbles N61 and N62 show a ringlike structure at 8 um. Particularly, N61 has a double-shell structure, which has expanded into IRDC G34.43+0.24. The outer shell is traced by 8 um and 13}CO J=1-0 emission, while the inner shell is traced by 24 um and 20 cm emission. We suggest that the outer shell (9.9*10^{5} yr) is created by the expansion of H II region G34.172+0.175, while the inner shell (4.1-6.3*10^{5} yr) may be produced by the energetic stellar wind of its central massive star. From GLIMPSE I catalog, we selected some Class I sources with an age of 10^{5} yr. These Class I sources are clustered along the filamentary molecular cloud.
176 - Patricio Sanhueza 2010
We present molecular line observations, made with angular resolutions of ~20, toward the filamentary infrared dark cloud G34.43+0.24 using the APEX [CO(3-2), 13CO(3-2), C18O(3-2) and CS(7-6) transitions], Nobeyama 45 m [CS(2-1), SiO(2-1), C34S(2-1), HCO+(1-0), H13CO+(1-0) and CH3OH(2-1) transitions], and SEST [CS(2-1) and C18O(2-1) transitions] telescopes. We find that the spatial distribution of the molecular emission is similar to that of the dust continuum emission observed with 11 resolution showing a filamentary structure and four cores. The cores have local thermodynamic equilibrium masses ranging from 3.3x10^2 - 1.5x10^3 solar masses and virial masses from 1.1x10^3 - 1.5x10^3 solar masses, molecular hydrogen densities between 1.8x10^4 and 3.9x10^5 cm^{-3}, and column densities >2.0x10^{22} cm^{-2}; values characteristics of massive star forming cores. The 13CO(3-2) profile observed toward the most massive core reveals a blue profile indicating that the core is undergoing large-scale inward motion with an average infall velocity of 1.3 km/s and a mass infall rate of 1.8x10^{-3} solar masses per year. We report the discovery of a molecular outflow toward the northernmost core thought to be in a very early stage of evolution. We also detect the presence of high velocity gas toward each of the other three cores, giving support to the hypothesis that the excess 4.5 $mu$ emission (green fuzzies) detected toward these cores is due to shocked gas. The molecular outflows are massive and energetic, with masses ranging from 25 -- 80 solar masses, momentum 2.3 - 6.9x10^2 Msun km/s, and kinetic energies 1.1 - 3.6x10^3 Msun km^2 s^{-2}; indicating that they are driven by luminous, high-mass young stellar objects.
Herein, we present the 12CO (J=1-0) and 13CO (J=1-0) emission line observations via the FOREST Unbiased Galactic plane Imaging survey with the Nobeyama 45-m telescope (FUGIN) toward a Spitzer bubble N4. We observed clouds of three discrete velocities: 16, 19, and 25 km/s. Their masses were 0.1x10^4 Msun, 0.3x10^4 Msun, and 1.4x10^4 Msun, respectively. The distribution of the 25-km/s cloud likely traces the ring-like structure observed at mid-infrared wavelength. We could not find clear expanding motion of the molecular gas in N4. On the contrary, we found a bridge feature and a complementary distribution, which are discussed as observational signatures of a cloud-cloud collision, between the 16- and 25-km/s clouds. We proposed a possible scenario wherein the formation of a massive star in N4 was triggered by a collision between the two clouds; however whereas the 19-km/s cloud is possibly not a part of the interaction with N4. The time scale of collision is estimated to be 0.2-0.3 Myr, which is comparable to the estimated dynamical age of the HII region of ~0.4 Myr. In N4W, a star-forming clump located west of N4, we observed molecular outflows from young stellar objects and the observational signature of a cloud-cloud collision. Thus, we also proposed a possible scenario in which massive- or intermediate-mass star formation was triggered via a cloud-cloud collision in N4W.
136 - M. Das 2014
We present the detection of molecular gas using CO(1-0) line emission and follow up Halpha imaging observations of galaxies located in nearby voids. The CO(1-0) observations were done using the 45m telescope of the Nobeyama Radio Observatory (NRO) and the optical observations were done using the Himalayan Chandra Telescope (HCT). Although void galaxies lie in the most under dense parts of our universe, a significant fraction of them are gas rich, spiral galaxies that show signatures of ongoing star formation. Not much is known about their cold gas content or star formation properties. In this study we searched for molecular gas in five void galaxies using the NRO. The galaxies were selected based on their relatively higher IRAS fluxes or Halpha line luminosities. CO(1--0) emission was detected in four galaxies and the derived molecular gas masses lie between (1 - 8)E+9 Msun. The H$alpha$ imaging observations of three galaxies detected in CO emission indicates ongoing star formation and the derived star formation rates vary between from 0.2 - 1.0 Msun/yr, which is similar to that observed in local galaxies. Our study shows that although void galaxies reside in under dense regions, their disks may contain molecular gas and have star formation rates similar to galaxies in denser environments.
We investigate the formation and evolution of giant molecular clouds (GMCs) by the collision of convergent warm neutral medium (WNM) streams in the interstellar medium, in the presence of magnetic fields and ambipolar diffusion (AD), focusing on the evolution of the star formation rate (SFR) and efficiency (SFE), as well as of the mass-to-magnetic-flux ratio (M2FR) in the forming clouds. We find that: 1) Clouds formed by supercritical inflow streams proceed directly to collapse, while clouds formed by subcritical streams first contract and then re-expand, oscillating on the scale of tens of Myr. 2) Our suite of simulations with initial magnetic field strength of 2, 3, and 4 $muG$ show that only supercritical or marginal critical streams lead to reasonable star forming rates. 3) The GMCs M2FR is a generally increasing function of time, whose growth rate depends on the details of how mass is added to the GMC from the WNM. 4) The M2FR is a highly fluctuating function of position in the clouds. 5) In our simulations, the SFE approaches stationarity, because mass is added to the GMC at a similar rate at which it converts mass to stars. In such an approximately stationary regime, the SFE provides a proxy of the supercritical mass fraction in the cloud. 6) We observe the occurrence of buoyancy of the low-M2FR regions within the gravitationally-contracting GMCs, so that the latter naturally segregate into a high-density, high-M2FR core and a low-density, low-M2FR envelope, without the intervention of AD. (Abridged)
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا