Do you want to publish a course? Click here

Probing the hot and dense nuclear matter with $K^*,bar{K}^*$ vector mesons

116   0   0.0 ( 0 )
 Added by Elena Bratkovskaya
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

We investigate probing the hot and dense nuclear matter with strange vector mesons ($K^*, bar{K}^*$). Our analysis is based on PHSD which incorporates partonic and hadronic dof and describes the full dynamics of HICs. This allows to study the $K^*$ and $bar{K}^*$ meson formation from the QGP and the in-medium effects related to the modification of their properties during the propagation in dense and hot matter. We employ relativistic Breit-Wigner spectral functions for the $K^*,bar{K}^*$ mesons with self-energies obtained from a G-matrix approach to study the role of in-medium effects on the $K^*$ and $bar{K}^*$ meson dynamics in HIC from FAIR/NICA to LHC energies. According to our analysis most of the final $K^*/bar{K}^*$s, that can be observed experimentally, are produced during the late hadronic phase and stem dominantly from the $K (bar{K}) + pi to K^*(bar{K}^*)$ formation channel. The amount of $K^*/bar{K}^*$s originating from the QGP channel is comparatively small even at LHC energies and such $K^*/bar{K}^*$s can hardly be reconstructed experimentally due to the rescattering of final pions and (anti-)kaons. This mirrors the results from our previous study on the strange vector-meson production in HICs at RHIC energies. The influence of the in-medium effects on the dynamics of the $K^*/bar{K}^*$ is rather small since they are mostly produced at low baryon densities. Additional cuts on the shape of the observed signal and the range of the invariant mass region of the $K^*/bar{K}^*$ also affect the final spectra. We demonstrate that the $K^*/bar{K}^*$ in-medium effects are more visible at lower beam energy, e.g. FAIR/NICA and BES RHIC energies, where the production of $K^*/bar{K}^*$s occurs at larger baryon densities. Finally, we present the experimental procedures to extract information on the in-medium masses and widths by fitting final mass spectra at LHC energies.



rate research

Read More

An important first step in the program of hadronization of chiral quark models is the bosonization in meson and diquark channels. This procedure is presented at finite temperatures and chemical potentials for the SU(2) flavor case of the NJL model with special emphasis on the mixing between scalar meson and scalar diquark modes which occurs in the 2SC color superconducting phase. The thermodynamic potential is obtained in the gaussian approximation for the meson and diquark fields and it is given the Beth-Uhlenbeck form. This allows a detailed discussion of bound state dissociation in hot, dense matter (Mott effect) in terms of the in-medium scattering phase shift of two-particle correlations. It is shown for the case without meson-diquark mixing that the phase shift can be separated into a continuum and a resonance part. In the latter, the Mott transition manifests itself by a change of the phase shift at threshold by pi in accordance with Levinsons theorem, when a bound state transforms to a resonance in the scattering continuum. The consequences for the contribution of pionic correlations to the pressure are discussed by evaluating the Beth-Uhlenbeck equation of state in different approximations. A similar discussion is performed for the scalar diquark channel in the normal phase. Further developments and applications of the developed approach are outlined.
Heavy ion collisions provide a unique probe of the quark-gluon plasma properties. The role of partonic degrees of freedom in p-Pb collisions at $sqrt{s_{NN}}$ = 5 TeV by studying the production cross section is studied. Experimental observable like the number of K$_S$ mesons is sensitive to the kinematic properties of the reaction. Our results demonstrate the importance of angular distribution for the partonic degrees of freedom in hadronization process.
168 - Floriana Giannuzzi 2012
We investigate vector meson spectral functions at finite temperature and density through the soft wall model, a bottom-up holographic approach to QCD. We find narrow resonances at small values of the parameters, becoming broader as temperature and density increase. We study dissociation of such states, occurring when no peak can be distinguished in the spectral function. We also find a decreasing of the mass of vector mesons at increasing temperature and density. Finally, a discussion of these results is presented.
60 - R.H.Lemmer 2005
The results of a recent experiment measuring the reaction pp -> dK^+ bar K^0 near threshold are interpreted in terms of a spectator model that encapsulates the main features of the observed K^+ bar K^0 invariant mass distribution. A chi^2 fit to this data leads to an imaginary part of the isovector scattering length in the K bar K channel of Im(a_1) = -(0.63 pm 0.24) fm. We then use the Flatte representation of the scattering amplitude to infer a value Re(a_1) = -(0.02 pm 0.02) fm for the real part under the assumption that scaling is approximately satisfied. We show further that it is not possible to exclude the effects of pi^+eta to K^+ bar K^0 channel coupling within the context of our model.
102 - Xiu-Lei Ren , Zhi-Feng Sun 2018
We study the three-body systems of $bar{K}^{(*)}B^{(*)}bar{B}^{(*)}$ by solving the Faddeev equations in the fixed-center approximation, where the light particle $bar{K}^{(*)}$ interacts with the heavy bound states of $Bbar{B}$ ($B^*bar{B}^*$) forming the clusters. In terms of the very attractive $bar{K}^*B$ and $bar{K}^*B^*$ subsystems, which are constrained by the observed $B_{s1}(5830)$ and $B_{s2}^*(5840)$ states in experiment, we find two deep bound states, containing the hidden-bottom components, with masses $11002pm 63$ MeV and $11078pm 57$ MeV in the $bar{K}^*Bbar{B}$ and $bar{K}^*B^*bar{B}^*$ systems, respectively. The two corresponding states with higher masses of the above systems are also predicted. In addition, using the constrained two-body amplitudes of $bar{K}B^{(*)}$ and $bar{K}bar{B}^{(*)}$ via the hidden gauge symmetry in the heavy-quark sector, we also find two three-body $bar{K}Bbar{B}$ and $bar{K}B^{*}bar{B}^*$ bound states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا