Do you want to publish a course? Click here

Super-Hydrophobic Stearic Acid Layer Formed on Anodized High Purified Magnesium for Improving Corrosion Resistance of Biodegradable Implants

63   0   0.0 ( 0 )
 Added by Sohrab Khalifeh
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magnesium and its alloys are ideal candidates for biodegradable implants. However, they can dissolve too rapidly in the human body for most applications. In this research, high purified magnesium (HP-Mg) was coated with stearic acid in order to slow the corrosion rate of magnesium in simulated body fluid at 37{deg}C. HP-Mg was anodized to form an oxide/hydroxide layer, then it was immersed in a stearic acid solution. Electrochemical impedance spectroscopy and potentiodynamic polarization were used to estimate the corrosion rate of HP-Mg specimens. The results confirm that the hydrophobic coating can temporarily decrease the corrosion rate of HP-Mg by 1000x.



rate research

Read More

Metallic glasses are excellent candidates for biomedical implant applications due to their inherent strength and corrosion resistance. Use of metallic glasses in structural applications is limited, however, because bulk dimensions are challenging to achieve. Glass-forming ability (GFA) varies strongly with alloy composition and becomes more difficult to predict as the number of chemical species in a system increases. Here we present a theoretical model - implemented in the AFLOW framework - for predicting GFA based on the competition between crystalline phases, and apply it to biologically relevant binary and ternary systems. Elastic properties are estimated based on the rule of mixtures for alloy systems that are predicted to be bulk glass-formers. Focusing on Ca- and Mg-based systems for use in biodegradable orthopedic support applications, we suggest alloys in the AgCaMg and AgMgZn families for further study; and alloys based on the compositions: Ag$_{0.33}$Mg$_{0.67}$, Cu$_{0.5}$Mg$_{0.5}$, Cu$_{0.37}$Mg$_{0.63}$ and Cu$_{0.25}$Mg$_{0.5}$Zn$_{0.25}$.
Magnesium and its alloys are ideal for biodegradable implants due to their biocompatibility and their low-stress shielding. However, they can corrode too rapidly in the biological environment. The objective of this research was to develop heat treatments to slow the corrosion of high purified magnesium and AZ31 alloy in simulated body fluid at 37{deg}C. Heat treatments were performed at different temperatures and times. Hydrogen evolution, weight loss, PDP, and EIS methods were used to measure the corrosion rates. Results show that heat treating can increase the corrosion resistance of HP-Mg by 2x and AZ31 by 10x.
673 - Sandhya Susarla 2020
Despite decades of research, metallic corrosion remains a long-standing challenge in many engineering applications. Specifically, designing a material that can resist corrosion both in abiotic as well as biotic environments remains elusive. Here we design a lightweight sulfur-selenium (S-Se) alloy with high stiffness and ductility that can serve as a universal corrosion-resistant coating with protection efficiency of ~99.9% for steel in a wide range of diverse environments. S-Se coated mild steel shows a corrosion rate that is 6-7 orders of magnitude lower than bare metal in abiotic (simulated seawater and sodium sulfate solution) and biotic (sulfate-reducing bacterial medium) environments. The coating is strongly adhesive and mechanically robust. We attribute the high corrosion resistance of the alloy in diverse environments to its semi-crystalline, non-porous, anti-microbial, and viscoelastic nature with superior mechanical performance, enabling it to successfully block a variety of diffusing species.
Magnesium alloys have been considered to be potential biocompatible metallic materials. Further improvement on the anti-corrosion is expected to make this type of materials more suitable for biomedical applications in the fields of orthopedics, cardiovascular surgery and others. In this paper, we introduce a method of carboxyl ion (COOH+) implantation to reduce the degradation of ZK60 Mg alloy and improve its functionality in physiological environment. X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM) experiments show the formation of a smooth layer containing carbaxylic group, carbonate, metal oxides and hydroxides on the ion implanted alloy surface. Corrosion experiments and in vitro cytotoxicity tests demonstrate that the ion implantation treatment can both reduce the corrosion rate and improve the biocompatibility of the alloy. The promising results indicate that organic functional group ion implantation may be a practical method of improving the biological and corrosion properties of magnesium alloys.
Magnesium alloys have been considered to be favorable biodegradable metallic materials used in orthopedic and cardiovascular applications. We introduce NH+2 to the AZ31 Mg alloy surface by ion implantation at the energy of 50 KeV with doses ranging from 1e16 ions/cm2 to 1e17 ions/cm2 to improve its corrosion resistance and biocompatibility. Surface morphology, mechanical properties, corrosion behavior and biocompatibility are studied in the experiments. The analysis confirms that the modified surface with smoothness and hydrophobicity significantly improves the corrosion resistance and biocompatibility while maintaining the mechanical property of the alloy.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا