No Arabic abstract
Spectral decomposition of the covariance operator is one of the main building blocks in the theory and applications of Gaussian processes. Unfortunately it is notoriously hard to derive in a closed form. In this paper we consider the eigenproblem for Gaussian bridges. Given a {em base} process, its bridge is obtained by conditioning the trajectories to start and terminate at the given points. What can be said about the spectrum of a bridge, given the spectrum of its base process? We show how this question can be answered asymptotically for a family of processes, including the fractional Brownian motion.
We investigate selfadjoint $C_0$-semigroups on Euclidean domains satisfying Gaussian upper bounds. Major examples are semigroups generated by second order uniformly elliptic operators with Kato potentials and magnetic fields. We study the long time behaviour of the $L_infty$ operator norm of the semigroup. As an application we prove a new $L_infty$-bound for the torsion function of a Euclidean domain that is close to optimal.
We propose and study a certain discrete time counterpart of the classical Feynman--Kac semigroup with a confining potential in countable infinite spaces. For a class of long range Markov chains which satisfy the direct step property we prove sharp estimates for functions which are (sub-, super-)harmonic in infinite sets with respect to the discrete Feynman--Kac operators. These results are compared with respective estimates for the case of a nearest-neighbour random walk which evolves on a graph of finite geometry. We also discuss applications to the decay rates of solutions to equations involving graph Laplacians and to eigenfunctions of the discrete Feynman--Kac operators. We include such examples as non-local discrete Schrodinger operators based on fractional powers of the nearest-neighbour Laplacians and related quasi-relativistic operators. Finally, we analyse various classes of Markov chains which enjoy the direct step property and illustrate the obtained results by examples.
In this paper, we start by showing that the intertwining relationship between two minimal Markov semigroups acting on Hilbert spaces implies that any recurrent extensions, in the sense of It^o, of these semigroups satisfy the same intertwining identity. Under mild additional assumptions on the intertwining operator, we prove that the converse also holds. This connection, which relies on the representation of excursion quantities as developed by Fitzsimmons and Getoor, enables us to give an interesting probabilistic interpretation of intertwining relationships between Markov semigroups via excursion theory: two such recurrent extensions that intertwine share, under an appropriate normalization, the same local time at the boundary point. Moreover, in the case when one of the (non-self-adjoint) semigroup intertwines with the one of a quasi-diffusion, we obtain an extension of Kreins theory of strings byshowing that its densely defined spectral measure is absolutely continuous with respect to the measure appearing in the Stieltjes representation of the Laplace exponent of the inverse local time. Finally, we illustrate our results with the class of positive self-similar Markov semigroups and also the reflected generalized Laguerre semigroups. For the latter, we obtain their spectral decomposition and provide, under some conditions, a perturbed spectral gap estimate for its convergence to equilibrium.
We study fractional smoothness of measures on $mathbb{R}^k$, that are images of a Gaussian measure under mappings from Gaussian Sobolev classes. As a consequence we obtain Nikolskii--Besov fractional regularity of these distributions under some weak nondegeneracy assumption.
In this paper, we provide the spectral decomposition in Hilbert space of the $mathcal{C}_0$-semigroup $P$ and its adjoint $hatP$ having as generator, respectively, the Caputo and the right-sided Riemann-Liouville fractional derivatives of index $1<alpha<2$. These linear operators, which are non-local and non-self-adjoint, appear in many recent studies in applied mathematics and also arise as the infinitesimal generators of some substantial processes such as the reflected spectrally negative $alpha$-stable process. Our approach relies on intertwining relations that we establish between these semigroups and the semigroup of a Bessel type process whose generator is a self-adjoint second order differential operator. In particular, from this commutation relation, we characterize the positive real axis as the continuous point spectrum of $P$ and provide a power series representation of the corresponding eigenfunctions. We also identify the positive real axis as the residual spectrum of the adjoint operator $hatP$ and elucidates its role in the spectral decomposition of these operators. By resorting to the concept of continuous frames, we proceed by investigating the domain of the spectral operators and derive two representations for the heat kernels of these semigroups. As a by-product, we also obtain regularity properties for these latter and also for the solution of the associated Cauchy problem.