Do you want to publish a course? Click here

Yes-Net: An effective Detector Based on Global Information

64   0   0.0 ( 0 )
 Added by Neil Ma
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

This paper introduces a new real-time object detection approach named Yes-Net. It realizes the prediction of bounding boxes and class via single neural network like YOLOv2 and SSD, but owns more efficient and outstanding features. It combines local information with global information by adding the RNN architecture as a packed unit in CNN model to form the basic feature extractor. Independent anchor boxes coming from full-dimension k-means is also applied in Yes-Net, it brings better average IOU than grid anchor box. In addition, instead of NMS, Yes-Net uses RNN as a filter to get the final boxes, which is more efficient. For 416 x 416 input, Yes-Net achieves 79.2% mAP on VOC2007 test at 39 FPS on an Nvidia Titan X Pascal.



rate research

Read More

197 - Fan Lu , Guang Chen , Yinlong Liu 2020
Keypoint detector and descriptor are two main components of point cloud registration. Previous learning-based keypoint detectors rely on saliency estimation for each point or farthest point sample (FPS) for candidate points selection, which are inefficient and not applicable in large scale scenes. This paper proposes Random Sample-based Keypoint Detector and Descriptor Network (RSKDD-Net) for large scale point cloud registration. The key idea is using random sampling to efficiently select candidate points and using a learning-based method to jointly generate keypoints and descriptors. To tackle the information loss of random sampling, we exploit a novel random dilation cluster strategy to enlarge the receptive field of each sampled point and an attention mechanism to aggregate the positions and features of neighbor points. Furthermore, we propose a matching loss to train the descriptor in a weakly supervised manner. Extensive experiments on two large scale outdoor LiDAR datasets show that the proposed RSKDD-Net achieves state-of-the-art performance with more than 15 times faster than existing methods. Our code is available at https://github.com/ispc-lab/RSKDD-Net.
In recent years, intellectual property (IP), which represents literary, inventions, artistic works, etc, gradually attract more and more peoples attention. Particularly, with the rise of e-commerce, the IP not only represents the product design and brands, but also represents the images/videos displayed on e-commerce platforms. Unfortunately, some attackers adopt some adversarial methods to fool the well-trained logo detection model for infringement. To overcome this problem, a novel logo detector based on the mechanism of looking and thinking twice is proposed in this paper for robust logo detection. The proposed detector is different from other mainstream detectors, which can effectively detect small objects, long-tail objects, and is robust to adversarial images. In detail, we extend detectoRS algorithm to a cascade schema with an equalization loss function, multi-scale transformations, and adversarial data augmentation. A series of experimental results have shown that the proposed method can effectively improve the robustness of the detection model. Moreover, we have applied the proposed methods to competition ACM MM2021 Robust Logo Detection that is organized by Alibaba on the Tianchi platform and won top 2 in 36489 teams. Code is available at https://github.com/jiaxiaojunQAQ/Robust-Logo-Detection.
Object detection is one of the most important areas in computer vision, which plays a key role in various practical scenarios. Due to limitation of hardware, it is often necessary to sacrifice accuracy to ensure the infer speed of the detector in practice. Therefore, the balance between effectiveness and efficiency of object detector must be considered. The goal of this paper is to implement an object detector with relatively balanced effectiveness and efficiency that can be directly applied in actual application scenarios, rather than propose a novel detection model. Considering that YOLOv3 has been widely used in practice, we develop a new object detector based on YOLOv3. We mainly try to combine various existing tricks that almost not increase the number of model parameters and FLOPs, to achieve the goal of improving the accuracy of detector as much as possible while ensuring that the speed is almost unchanged. Since all experiments in this paper are conducted based on PaddlePaddle, we call it PP-YOLO. By combining multiple tricks, PP-YOLO can achieve a better balance between effectiveness (45.2% mAP) and efficiency (72.9 FPS), surpassing the existing state-of-the-art detectors such as EfficientDet and YOLOv4.Source code is at https://github.com/PaddlePaddle/PaddleDetection.
239 - Zizheng Que , Guo Lu , Dong Xu 2021
In this paper, we propose a two-stage deep learning framework called VoxelContext-Net for both static and dynamic point cloud compression. Taking advantages of both octree based methods and voxel based schemes, our approach employs the voxel context to compress the octree structured data. Specifically, we first extract the local voxel representation that encodes the spatial neighbouring context information for each node in the constructed octree. Then, in the entropy coding stage, we propose a voxel context based deep entropy model to compress the symbols of non-leaf nodes in a lossless way. Furthermore, for dynamic point cloud compression, we additionally introduce the local voxel representations from the temporal neighbouring point clouds to exploit temporal dependency. More importantly, to alleviate the distortion from the octree construction procedure, we propose a voxel context based 3D coordinate refinement method to produce more accurate reconstructed point cloud at the decoder side, which is applicable to both static and dynamic point cloud compression. The comprehensive experiments on both static and dynamic point cloud benchmark datasets(e.g., ScanNet and Semantic KITTI) clearly demonstrate the effectiveness of our newly proposed method VoxelContext-Net for 3D point cloud geometry compression.
We introduce G-CNN, an object detection technique based on CNNs which works without proposal algorithms. G-CNN starts with a multi-scale grid of fixed bounding boxes. We train a regressor to move and scale elements of the grid towards objects iteratively. G-CNN models the problem of object detection as finding a path from a fixed grid to boxes tightly surrounding the objects. G-CNN with around 180 boxes in a multi-scale grid performs comparably to Fast R-CNN which uses around 2K bounding boxes generated with a proposal technique. This strategy makes detection faster by removing the object proposal stage as well as reducing the number of boxes to be processed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا