Do you want to publish a course? Click here

Electric control of the edge magnetization in zigzag stanene nanoribbon

77   0   0.0 ( 0 )
 Added by Xiao Li
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

There has been tremendous interest in manipulating electron and hole-spin states in low-dimensional structures for electronic and spintronic applications. We study the edge magnetic coupling and anisotropy in zigzag stanene nanoribbons, by first-principles calculations. Taking into account considerable spin-orbit coupling and ferromagnetism at each edge, zigzag stanene nanoribbon is insulating and its band gap depends on the inter-edge magnetic coupling and the magnetization direction. Especially for nanoribbon edges with out-of-plane antiferromagnetic coupling, two non-degenerate valleys of edge states emerge and the spin degeneracy is tunable by a transverse electric field, which give full play to spin and valley degrees of freedom. More importantly, both the magnetic order and anisotropy can be selectively controlled by electron and hole doping, demonstrating a readily accessible gate-induced modulation of magnetism. These intriguing features offer a practical avenue for designing energy-efficient devices based on multiple degrees of freedom of electron and magneto-electric couplings.



rate research

Read More

At B3LYP level of theory, we predict that the half-metallicity in zigzag edge graphene nanoribbon (ZGNR) can be realized when an external electric field is applied across the ribbon. The critical electric field to induce the half-metallicity decreases with the increase of the ribbon width. Both the spin polarization and half-metallicity are removed when the edge state electrons fully transferred from one side to the other under very strong electric field. The electric field range under which ZGNR remain half-metallic increases with the ribbon width. Our study demonstrates a rich field-induced spin polarization behavior, which may leads to some important applications in spinstronics.
We find the realization of large converse magnetoelectric (ME) effects at room temperature in a multiferroic hexaferrite Ba$_{0.52}$Sr$_{2.48}$Co$_{2}$Fe$_{24}$O$_{41}$ single crystal, in which rapid change of electric polarization in low magnetic fields (about 5 mT) is coined to a large ME susceptibility of 3200 ps/m. The modulation of magnetization then reaches up to 0.62 $mu$$_{B}$/f.u. in an electric field of 1.14 MV/m. We find further that four ME states induced by different ME poling exhibit unique, nonvolatile magnetization versus electric field curves, which can be approximately described by an effective free energy with a distinct set of ME coefficients.
We present Fermis golden rule calculations of the optical carrier injection and the coherent control of current injection in graphene nanoribbons with zigzag geometry, using an envelope function approach. This system possesses strongly localized states (flat bands) with a large joint density of states at low photon energies; for ribbons with widths above a few tens of nanometers, this system also posses large number of (non-flat) states with maxima and minima close to the Fermi level. Consequently, even with small dopings the occupation of these localized states can be significantly altered. In this work, we calculate the relevant quantities for coherent control at different chemical potentials, showing the sensitivity of this system to the occupation of the edge states. We consider coherent control scenarios arising from the interference of one-photon absorption at $2hbaromega$ with two-photon absorption at $hbaromega$, and those arising from the interference of one-photon absorption at $hbaromega$ with stimulated electronic Raman scattering (virtual absorption at $2hbaromega$ followed by emission at $hbaromega$). Although at large photon energies these processes follow an energy-dependence similar to that of 2D graphene, the zigzag nanoribbons exhibit a richer structure at low photon energies, arising from divergences of the joint density of states and from resonant absorption processes, which can be strongly modified by doping. As a figure of merit for the injected carrier currents, we calculate the resulting swarm velocities. Finally, we provide estimates for the limits of validity of our model.
Motivated by the recent successful formation of the MoSi2N4 monolayer [Hong et al., Sci. 369, 670 (2020)], the structural, electronic and magnetic properties of MoSi2N4 nanoribbons (NRs) is investigated for the first time . The band structure calculations showed spin-polarization in zigzag edges and a non-magnetic semiconducting character in armchair edges. For armchair-edges, we identify an indirect to direct band gap shift compared to the MoSi2N4 monolayer, and its energy gap increases with increasing NR width. Anisotropic electrical and magnetic behavior is observed via band structure calculations in the zigzag and armchair edges, where, surprisingly, for the one type of zigzag-edges configuration, we identify a Dirac-semimetal character. The appearance of magnetism and Dirac-semimetal in MoSi2N4 ribbon can give rise to novel physical properties, which could be useful in applications for next-generation electronic devices.
A single atomic slice of {alpha}-tin-stanene-has been predicted to host quantum spin Hall effect at room temperature, offering an ideal platform to study low-dimensional and topological physics. While recent research has intensively focused on monolayer stanene, the quantum size effect in few-layer stanene could profoundly change material properties, but remains unexplored. By exploring the layer degree of freedom, we unexpectedly discover superconductivity in few-layer stanene down to a bilayer grown on PbTe, while bulk {alpha}-tin is not superconductive. Through substrate engineering, we further realize a transition from a single-band to a two-band superconductor with a doubling of the transition temperature. In-situ angle resolved photoemission spectroscopy (ARPES) together with first-principles calculations elucidate the corresponding band structure. Interestingly, the theory also indicates the existence of a topologically nontrivial band. Our experimental findings open up novel strategies for constructing two-dimensional topological superconductors.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا