Do you want to publish a course? Click here

Electric field control of nonvolatile four-state magnetization at room temperature

140   0   0.0 ( 0 )
 Added by Sae Hwan Chun
 Publication date 2011
  fields Physics
and research's language is English




Ask ChatGPT about the research

We find the realization of large converse magnetoelectric (ME) effects at room temperature in a multiferroic hexaferrite Ba$_{0.52}$Sr$_{2.48}$Co$_{2}$Fe$_{24}$O$_{41}$ single crystal, in which rapid change of electric polarization in low magnetic fields (about 5 mT) is coined to a large ME susceptibility of 3200 ps/m. The modulation of magnetization then reaches up to 0.62 $mu$$_{B}$/f.u. in an electric field of 1.14 MV/m. We find further that four ME states induced by different ME poling exhibit unique, nonvolatile magnetization versus electric field curves, which can be approximately described by an effective free energy with a distinct set of ME coefficients.



rate research

Read More

151 - Y. Ando , Y. Maeda , K. Kasahara 2011
We demonstrate spin-accumulation signals controlled by the gate voltage in a metal-oxide-semiconductor field effect transistor structure with a Si channel and a CoFe/$n^{+}$-Si contact at room temperature. Under the application of a back-gate voltage, we clearly observe the three-terminal Hanle-effect signal, i.e., spin-accumulation signal. The magnitude of the spin-accumulation signals can be reduced with increasing the gate voltage. We consider that the gate controlled spin signals are attributed to the change in the carrier density in the Si channel beneath the CoFe/$n^{+}$-Si contact. This study is not only a technological jump for Si-based spintronic applications with gate structures but also reliable evidence for the spin injection into the semiconducting Si channel at room temperature.
Bismuth ferrite, BiFeO3, is the only known room-temperature multiferroic material. We demonstrate here, using neutron scattering measurements in high quality single crystals, that the antiferromagnetic and ferroelectric orders are intimately coupled. Initially in a single ferroelectric state, our crystals have a canted antiferromagnetic structure describing a unique cycloid. Under electrical poling, polarisation re-orientation induces a spin flop. We argue here that the coupling between the two orders may be stronger in the bulk than that observed in thin films where the cycloid is absent.
162 - Y S Chai , S H Chun , S Y Haam 2010
We show that room temperature resistivity of Ba0.5Sr1.5Zn2Fe12O22 single crystals increases by more than three orders of magnitude upon being subjected to optimized heat treatments. The increase in the resistivity allows the determination of magnetic field (H)-induced ferroelectric phase boundaries up to 310 K through the measurements of dielectric constant at a frequency of 10 MHz. Between 280 and 310 K, the dielectric constant curve shows a peak centered at zero magnetic field and thereafter decreases monotonically up to 0.1 T, exhibiting a magnetodielectric effect of 1.1%. This effect is ascribed to the realization of magnetic field-induced ferroelectricity at an H value of less than 0.1 T near room temperature. Comparison between electric and magnetic phase diagrams in wide temperature- and field-windows suggests that the magnetic field for inducing ferroelectricity has decreased near its helical spin ordering temperature around 315 K due to the reduction of spin anisotropy in Ba0.5Sr1.5Zn2Fe12O22.
135 - V. Iurchuk , B. Doudin , B. Kundys 2014
We present a multifunctional and multistate permanent memory device based on lateral electric field control of a strained surface. Sub-coercive electrical writing of a remnant strain of a PZT substrate imprints stable and rewritable resistance changes on a CoFe overlayer. A proof-of-principle device, with the simplest resistance strain gage design, is shown as a memory cell exhibiting 17-memory states of high reproducibility and reliability for nonvolatile operations. Magnetoresistance of the film also depends on the cell state, and indicates a rewritable change of magnetic properties persisting in the remnant strain of the substrate. This makes it possible to combine strain, magnetic and resistive functionalities in a single memory element, and suggests that sub-coercive stress studies are of interest for straintronics applications.
Polar textures have attracted significant attention in recent years as a promising analog to spin-based textures in ferromagnets. Here, using optical second harmonic generation based circular dichroism, we demonstrate deterministic and reversible control of chirality over mesoscale regions in ferroelectric vortices using an applied electric field. The microscopic origins of the chirality, the pathway during the switching, and the mechanism for electric-field control are described theoretically via phase-field modeling and second-principles simulations, and experimentally by examination of the microscopic response of the vortices under an applied field. The emergence of chirality from the combination of non-chiral materials and subsequent control of the handedness with an electric field has far-reaching implications for new electronics based on chirality as a field controllable order parameter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا