No Arabic abstract
We investigate the problem of inferring the causal predictors of a response $Y$ from a set of $d$ explanatory variables $(X^1,dots,X^d)$. Classical ordinary least squares regression includes all predictors that reduce the variance of $Y$. Using only the causal predictors instead leads to models that have the advantage of remaining invariant under interventions, loosely speaking they lead to invariance across different environments or heterogeneity patterns. More precisely, the conditional distribution of $Y$ given its causal predictors remains invariant for all observations. Recent work exploits such a stability to infer causal relations from data with different but known environments. We show that even without having knowledge of the environments or heterogeneity pattern, inferring causal relations is possible for time-ordered (or any other type of sequentially ordered) data. In particular, this allows detecting instantaneous causal relations in multivariate linear time series which is usually not the case for Granger causality. Besides novel methodology, we provide statistical confidence bounds and asymptotic detection results for inferring causal predictors, and present an application to monetary policy in macroeconomics.
Little known relations of the renown concept of the halfspace depth for multivariate data with notions from convex and affine geometry are discussed. Halfspace depth may be regarded as a measure of symmetry for random vectors. As such, the depth stands as a generalization of a measure of symmetry for convex sets, well studied in geometry. Under a mild assumption, the upper level sets of the halfspace depth coincide with the convex floating bodies used in the definition of the affine surface area for convex bodies in Euclidean spaces. These connections enable us to partially resolve some persistent open problems regarding theoretical properties of the depth.
Information geometry uses the formal tools of differential geometry to describe the space of probability distributions as a Riemannian manifold with an additional dual structure. The formal equivalence of compositional data with discrete probability distributions makes it possible to apply the same description to the sample space of Compositional Data Analysis (CoDA). The latter has been formally described as a Euclidean space with an orthonormal basis featuring components that are suitable combinations of the original parts. In contrast to the Euclidean metric, the information-geometric description singles out the Fisher information metric as the only one keeping the manifolds geometric structure invariant under equivalent representations of the underlying random variables. Well-known concepts that are valid in Euclidean coordinates, e.g., the Pythogorean theorem, are generalized by information geometry to corresponding notions that hold for more general coordinates. In briefly reviewing Euclidean CoDA and, in more detail, the information-geometric approach, we show how the latter justifies the use of distance measures and divergences that so far have received little attention in CoDA as they do not fit the Euclidean geometry favored by current thinking. We also show how entropy and relative entropy can describe amalgamations in a simple way, while Aitchison distance requires the use of geometric means to obtain more succinct relationships. We proceed to prove the information monotonicity property for Aitchison distance. We close with some thoughts about new directions in CoDA where the rich structure that is provided by information geometry could be exploited.
Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challenges. In this paper, we consider the problem of learning abstractions that generalize in block MDPs, families of environments with a shared latent state space and dynamics structure over that latent space, but varying observations. We leverage tools from causal inference to propose a method of invariant prediction to learn model-irrelevance state abstractions (MISA) that generalize to novel observations in the multi-environment setting. We prove that for certain classes of environments, this approach outputs with high probability a state abstraction corresponding to the causal feature set with respect to the return. We further provide more general bounds on model error and generalization error in the multi-environment setting, in the process showing a connection between causal variable selection and the state abstraction framework for MDPs. We give empirical evidence that our methods work in both linear and nonlinear settings, attaining improved generalization over single- and multi-task baselines.
This paper derives time-uniform confidence sequences (CS) for causal effects in experimental and observational settings. A confidence sequence for a target parameter $psi$ is a sequence of confidence intervals $(C_t)_{t=1}^infty$ such that every one of these intervals simultaneously captures $psi$ with high probability. Such CSs provide valid statistical inference for $psi$ at arbitrary stopping times, unlike classical fixed-time confidence intervals which require the sample size to be fixed in advance. Existing methods for constructing CSs focus on the nonasymptotic regime where certain assumptions (such as known bounds on the random variables) are imposed, while doubly robust estimators of causal effects rely on (asymptotic) semiparametric theory. We use sequenti
The current work is motivated by the need for robust statistical methods for precision medicine; as such, we address the need for statistical methods that provide actionable inference for a single unit at any point in time. We aim to learn an optimal, unknown choice of the controlled components of the design in order to optimize the expected outcome; with that, we adapt the randomization mechanism for future time-point experiments based on the data collected on the individual over time. Our results demonstrate that one can learn the optimal rule based on a single sample, and thereby adjust the design at any point t with valid inference for the mean target parameter. This work provides several contributions to the field of statistical precision medicine. First, we define a general class of averages of conditional causal parameters defined by the current context for the single unit time-series data. We define a nonparametric model for the probability distribution of the time-series under few assumptions, and aim to fully utilize the sequential randomization in the estimation procedure via the double robust structure of the efficient influence curve of the proposed target parameter. We present multiple exploration-exploitation strategies for assigning treatment, and methods for estimating the optimal rule. Lastly, we present the study of the data-adaptive inference on the mean under the optimal treatment rule, where the target parameter adapts over time in response to the observed context of the individual. Our target parameter is pathwise differentiable with an efficient influence function that is doubly robust - which makes it easier to estimate than previously proposed variations. We characterize the limit distribution of our estimator under a Donsker condition expressed in terms of a notion of bracketing entropy adapted to martingale settings.