Do you want to publish a course? Click here

Unsupervised Learning of Frustrated Classical Spin Models I: Principle Component Analysis

84   0   0.0 ( 0 )
 Added by Hui Zhai
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

This work aims at the goal whether the artificial intelligence can recognize phase transition without the prior human knowledge. If this becomes successful, it can be applied to, for instance, analyze data from quantum simulation of unsolved physical models. Toward this goal, we first need to apply the machine learning algorithm to well-understood models and see whether the outputs are consistent with our prior knowledge, which serves as the benchmark of this approach. In this work, we feed the compute with data generated by the classical Monte Carlo simulation for the XY model in frustrated triangular and union jack lattices, which has two order parameters and exhibits two phase transitions. We show that the outputs of the principle component analysis agree very well with our understanding of different orders in different phases, and the temperature dependences of the major components detect the nature and the locations of the phase transitions. Our work offers promise for using machine learning techniques to study sophisticated statistical models, and our results can be further improved by using principle component analysis with kernel tricks and the neural network method.



rate research

Read More

We study the ground state of frustrated spin-S chains in a strong magnetic field in the immediate vicinity of saturation. In strongly frustrated chains, the magnon dispersion has two degenerate minima at inequivalent momenta $pm Q$, and just below the saturation field the system can be effectively represented as a dilute one-dimensional lattice gas of two species of bosons that correspond to magnons with momenta around $pm Q$. We present a theory of effective interactions in such a dilute magnon gas that allows us to make quantitative predictions for arbitrary values of the spin. With the help of this method, we are able to establish the magnetic phase diagram of frustrated chains close to saturation and study phase transitions between several nontrivial states, including a two-component Luttinger liquid, a vector chiral phase, and phases with bound magnons. We study those phase transitions numerically and find a good agreement with our analytical predictions.
Unsupervised learning makes manifest the underlying structure of data without curated training and specific problem definitions. However, the inference of relationships between data points is frustrated by the `curse of dimensionality in high-dimensions. Inspired by replica theory from statistical mechanics, we consider replicas of the system to tune the dimensionality and take the limit as the number of replicas goes to zero. The result is the intensive embedding, which is not only isometric (preserving local distances) but allows global structure to be more transparently visualized. We develop the Intensive Principal Component Analysis (InPCA) and demonstrate clear improvements in visualizations of the Ising model of magnetic spins, a neural network, and the dark energy cold dark matter ({Lambda}CDM) model as applied to the Cosmic Microwave Background.
We investigate the classical Heisenberg and planar (XY) models on the windmill lattice. The windmill lattice is formed out of two widely occurring lattice geometries: a triangular lattice is coupled to its dual honeycomb lattice. Using a combination of iterative minimization, heat-bath Monte Carlo simulations and analytical calculations, we determine the complete ground state phase diagram of both models and find the exact energies of the phases. The phase diagram shows a rich phenomenology due to competing interactions and hosts, in addition to collinear and various coplanar phases, also intricate non-coplanar phases. We briefly outline different paths to an experimental realization of these spin models. Our extensive study provides a starting point for the investigation of quantum and thermal fluctuation effects.
A principle of hierarchical entropy maximization is proposed for generalized superstatistical systems, which are characterized by the existence of three levels of dynamics. If a generalized superstatistical system comprises a set of superstatistical subsystems, each made up of a set of cells, then the Boltzmann-Gibbs-Shannon entropy should be maximized first for each cell, second for each subsystem, and finally for the whole system. Hierarchical entropy maximization naturally reflects the sufficient time-scale separation between different dynamical levels and allows one to find the distribution of both the intensive parameter and the control parameter for the corresponding superstatistics. The hierarchical maximum entropy principle is applied to fluctuations of the photon Bose-Einstein condensate in a dye microcavity. This principle provides an alternative to the master equation approach recently applied to this problem. The possibility of constructing generalized superstatistics based on a statistics different from the Boltzmann-Gibbs statistics is pointed out.
Fractons are topological quasiparticles with limited mobility. While there exists a variety of models hosting these excitations, typical fracton systems require rather complicated many-particle interactions. Here, we discuss fracton behavior in the more common physical setting of classical kagome spin models with frustrated two-body interactions only. We investigate systems with different types of elementary spin degrees of freedom (three-state Potts, XY, and Heisenberg spins) which all exhibit characteristic subsystem symmetries and fracton-like excitations. The mobility constraints of isolated fractons and bound fracton pairs in the three-state Potts model are, however, strikingly different compared to the known type-I or type-II fracton models. One may still explain these properties in terms of type-I fracton behavior and construct an effective low-energy tensor gauge theory when considering the system as a 2D cut of a 3D cubic lattice model. Our extensive classical Monte-Carlo simulations further indicate a crossover into a low temperature glassy phase where the system gets trapped in metastable fracton states. Moving on to XY spins, we find that in addition to fractons the system hosts fractional vortex excitations. As a result of the restricted mobility of both types of defects, our classical Monte-Carlo simulations do not indicate a Kosterlitz-Thouless transition but again show a crossover into a glassy low-temperature regime. Finally, the energy barriers associated with fractons vanish in the case of Heisenberg spins, such that defect states may continuously decay into a ground state. These decays, however, exhibit a power-law relaxation behavior which leads to slow equilibration dynamics at low temperatures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا