Do you want to publish a course? Click here

Classical Heisenberg and planar spin models on the windmill lattice

278   0   0.0 ( 0 )
 Added by Peter Orth
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the classical Heisenberg and planar (XY) models on the windmill lattice. The windmill lattice is formed out of two widely occurring lattice geometries: a triangular lattice is coupled to its dual honeycomb lattice. Using a combination of iterative minimization, heat-bath Monte Carlo simulations and analytical calculations, we determine the complete ground state phase diagram of both models and find the exact energies of the phases. The phase diagram shows a rich phenomenology due to competing interactions and hosts, in addition to collinear and various coplanar phases, also intricate non-coplanar phases. We briefly outline different paths to an experimental realization of these spin models. Our extensive study provides a starting point for the investigation of quantum and thermal fluctuation effects.



rate research

Read More

We give a complete classification of fully symmetric as well as chiral $mathbb{Z}_2$ quantum spin liquids on the pyrochlore lattice using a projective symmetry group analysis of Schwinger boson mean-field states. We find 50 independent ansatze, including the 12 fully symmetric nearest-neighbor $mathbb{Z}_2$ spin liquids that have been classified by Liu et al. [https://journals.aps.org/prb/abstract/10.1103/PhysRevB.100.075125]. For each class we specify the most general symmetry-allowed mean-field Hamiltonian. Additionally, we test the properties of a subset of the spin liquid ansatze by solving the mean-field equations for the spin-$1/2$ XXZ model near the antiferromagnetic Heisenberg point. We find that the ansatz with the lowest energy at mean-field level is a chiral spin liquid that breaks the screw symmetry of the lattice modulo time reversal symmetry. This state has a different symmetry than the previously studied monopole flux state. Moreover, this chiral spin liquid state has a substantially lower energy than all other symmetric spin liquid states, suggesting that it could be a stable ground state beyond the mean-field approximation employed in this work.
In addition to low-energy spin fluctuations, which distinguish them from band insulators, Mott insulators often possess orbital degrees of freedom when crystal-field levels are partially filled. While in most situations spins and orbitals develop long-range order, the possibility for the ground state to be a quantum liquid opens new perspectives. In this paper, we provide clear evidence that the SU(4) symmetric Kugel-Khomskii model on the honeycomb lattice is a quantum spin-orbital liquid. The absence of any form of symmetry breaking - lattice or SU(N) - is supported by a combination of semiclassical and numerical approaches: flavor-wave theory, tensor network algorithm, and exact diagonalizations. In addition, all properties revealed by these methods are very accurately accounted for by a projected variational wave-function based on the pi-flux state of fermions on the honeycomb lattice at 1/4-filling. In that state, correlations are algebraic because of the presence of a Dirac point at the Fermi level, suggesting that the symmetric Kugel-Khomskii model on the honeycomb lattice is an algebraic quantum spin-orbital liquid. This model provides a good starting point to understand the recently discovered spin-orbital liquid behavior of Ba_3CuSb_2O_9. The present results also suggest to choose optical lattices with honeycomb geometry in the search for quantum liquids in ultra-cold four-color fermionic atoms.
We investigate classical Heisenberg spins on the Shastry-Sutherland lattice and under an external magnetic field. A detailed study is carried out both analytically and numerically by means of classical Monte-Carlo simulations. Magnetization pseudo-plateaux are observed around 1/3 of the saturation magnetization for a range of values of the magnetic couplings. We show that the existence of the pseudo-plateau is due to an entropic selection of a particular collinear state. A phase diagram that shows the domains of existence of those pseudo-plateaux in the $(h, T)$ plane is obtained.
Guided by the recent discovery of SU($2$)$_1$ and SU($3$)$_1$ chiral spin liquids on the square lattice, we propose a family of generic time-reversal symmetry breaking SU($N$)-symmetric models, of arbitrary $Nge 2$, in the fundamental representation, with short-range interactions extending at most to triangular units. The evidence for Abelian chiral spin liquid (CSL) phases in such models is obtained via a combination of complementary numerical methods such as exact diagonalizations (ED), infinite density matrix renormalization group (iDMRG) and infinite Projected Entangled Pair State (iPEPS). Extensive ED on small clusters are carried out up to $N=10$, revealing (in some range of the Hamiltonian parameters) a bulk gap and ground-state degeneracy on periodic clusters as well as linear dispersing chiral modes on the edge of open systems, whose level counting is in full agreement with SU($N$)$_1$ Wess-Zumino-Witten conformal field theory predictions. Using an SU($N$)-symmetric version of iDMRG for $N=2,3$ and $4$ to compute entanglement spectra on (infinitely-long) cylinders in all topological sectors, we provide additional unambiguous signatures of the SU($N$)$_1$ character of the chiral liquids. An SU($4$)-symmetric chiral PEPS is shown to provide a good variational ansatz of the $N=4$ ground state, constructed in a manner similar to its $N=2$ and $N=3$ analogs. The entanglement spectra in all topological sectors of an infinitely long cylinder reveal specific features of the chiral edge modes originating from the PEPS holographic bulk-edge correspondence. Results for the correlation lengths suggest some form of long-range correlations in SU($N$) chiral PEPS, which nevertheless do not preclude an accurate representation of the gapped SU($N$) CSL phases. Finally, we discuss the possible observation of such Abelian CSL in ultracold atom setups.
Conflicting predictions have been made for the ground state of the SU(3) Heisenberg model on the honeycomb lattice: Tensor network simulations found a plaquette order [Zhao et al, Phys. Rev. B 85, 134416 (2012)], where singlets are formed on hexagons, while linear flavor-wave theory (LFWT) suggested a dimerized, color ordered state [Lee and Yang, Phys. Rev. B 85, 100402 (2012)]. In this work we show that the former state is the true ground state by a systematic study with infinite projected-entangled pair states (iPEPS), for which the accuracy can be systematically controlled by the so-called bond dimension $D$. Both competing states can be reproduced with iPEPS by using different unit cell sizes. For small $D$ the dimer state has a lower variational energy than the plaquette state, however, for large $D$ it is the latter which becomes energetically favorable. The plaquette formation is also confirmed by exact diagonalizations and variational Monte Carlo studies, according to which both the dimerized and plaquette states are non-chiral flux states.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا