Do you want to publish a course? Click here

Above 400 K Robust Perpendicular Ferromagnetic Phase in a Topological Insulator

348   0   0.0 ( 0 )
 Added by Jing Shi
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

The quantum anomalous Hall effect (QAHE) that emerges under broken time-reversal symmetry in topological insulators (TI) exhibits many fascinating physical properties for potential applications in nano-electronics and spintronics. However, in transition-metal doped TI, the only experimentally demonstrated QAHE system to date, the effect is lost at practically relevant temperatures. This constraint is imposed by the relatively low Curie temperature (Tc) and inherent spin disorder associated with the random magnetic dopants. Here we demonstrate drastically enhanced Tc by exchange coupling TI to Tm3Fe5O12, a high-Tc magnetic insulator with perpendicular magnetic anisotropy. Signatures that the TI surface states acquire robust ferromagnetism are revealed by distinct squared anomalous Hall hysteresis loops at 400 K. Point-contact Andreev reflection spectroscopy confirms that the TI surface is indeed spin-polarized. The greatly enhanced Tc, absence of spin disorder, and perpendicular anisotropy are all essential to the occurrence of the QAHE at high temperatures.



rate research

Read More

We report an above-room-temperature ferromagnetic state realized in a proximitized Dirac semimetal, which is fabricated by growing typical Dirac semimetal Cd$_3$As$_2$ films on a ferromagnetic garnet with strong perpendicular magnetization. Observed anomalous Hall conductivity with substantially large Hall angles is found to be almost proportional to magnetization and opposite in sign to it. Theoretical calculations based on first-principles electronic structure also demonstrate that the Fermi-level dependent anomalous Hall conductivity reflects the Berry curvature originating in the split Weyl nodes. The present Dirac-semimetal/ferromagnetic-insulator heterostructure will provide a novel platform for exploring Weyl-node transport phenomena and spintronic functions lately proposed for topological semimetals.
We investigate the magnetic and magneto-optic properties of epitaxial GaN:Gd layers as a function of the external magnetic field and temperature. An unprecedented magnetic moment is observed in this diluted magnetic semiconductor. The average value of the moment per Gd atom is found to be as high as 4000 mub as compared to its atomic moment of 8 mub. The long-range spin-polarization of the GaN matrix by Gd is also reflected in the circular polarization of magneto-photoluminescence measurements. Moreover, the materials system is found to be ferromagnetic above room temperature in the entire concentration range under investigation (7$times10^{15}$ to 2$times10^{19}$ cm$^{-3}$). We propose a phenomenological model to understand the macroscopic magnetic behavior of the system. Our study reveals a close connection between the observed ferromagnetism and the colossal magnetic moment of Gd.
Based on density functional theory (DFT), we investigate the electronic properties of bulk and single-layer ZrTe$_4$Se. The band structure of bulk ZrTe$_4$Se can produce a semimetal-to-topological insulator (TI) phase transition under uniaxial strain. The maximum global band gap is 0.189 eV at the 7% tensile strain. Meanwhile, the Z$_2$ invariants (0; 110) demonstrate conclusively it is a weak topological insulator (WTI). The two Dirac cones for the (001) surface further confirm the nontrivial topological nature. The single-layer ZrTe$_4$Se is a quantum spin Hall (QSH) insulator with a band gap 86.4 meV and Z$_2$=1, the nontrivial metallic edge states further confirm the nontrivial topological nature. The maximum global band gap is 0.211 eV at the tensile strain 8%. When the compressive strain is more than 1%, the band structure of single-layer ZrTe$_4$Se produces a TI-to-semimetal transition. These theoretical analysis may provide a method for searching large band gap TIs and platform for topological nanoelectronic device applications.
Topological states of matter originate from distinct topological electronic structures of materials. As for strong topological insulators (STIs), the topological surface (interface) is a direct consequence of electronic structure transition between materials categorized to different topological genus. Therefore, it is fundamentally interesting if such topological character can be manipulated. Besides tuning the crystal field and the strength of spin-orbital coupling (e.g., by external strain, or chemical doping), there is currently rare report on topological state induced in ordinary insulators (OIs) by the heterostructure of OI/STI. Here we report the observation of a Dirac cone topological surface state (TSS) induced on the Sb2Se3 layer up to 15 nm thick in the OI/STI heterostructure, in sharp contrast with the OI/OI heterostructure where no sign of TSS can be observed. This is evident for an induced topological state in an OI by heterostructure.
The unidirectional magnetoresistance (UMR) is one of the most complex spin-dependent transport phenomena in ferromagnet/non-magnet bilayers, which involves spin injection and accumulation due to the spin Hall effect (SHE) or Rashba-Edelstein effect (REE), spin-dependent scattering, and magnon scattering at the interface or in the bulk of the ferromagnet. While UMR in metallic bilayers has been studied extensively in very recent years, its magnitude is as small as 10$^-$$^5$, which is too small for practical applications. Here, we demonstrate a giant UMR effect in a heterostructure of BiSb topological insulator -- GaMnAs ferromagnetic semiconductor. We obtained a large UMR ratio of 1.1%, and found that this giant UMR is governed not by the giant magnetoresistance (GMR)-like spin-dependent scattering, but by magnon emission/absorption and strong spin-disorder scattering in the GaMnAs layer. Our results provide new insight into the complex physics of UMR, as well as a strategy for enhancing its magnitude for device applications.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا