Do you want to publish a course? Click here

Schwarzian conditions for linear differential operators with selected differential Galois groups (unabridged version)

66   0   0.0 ( 0 )
 Added by J. M. Maillard
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We show that non-linear Schwarzian differential equations emerging from covariance symmetry conditions imposed on linear differential operators with hypergeometric function solutions, can be generalized to arbitrary order linear differential operators with polynomial coefficients having selected differential Galois groups. For order three and order four linear differential operators we show that this pullback invariance up to conjugation eventually reduces to symmetric powers of an underlying order-two operator. We give, precisely, the conditions to have modular correspondences solutions for such Schwarzian differential equations, which was an open question in a previous paper. We analyze in detail a pullbacked hypergeometric example generalizing modular forms, that ushers a pullback invariance up to operator homomorphisms. We expect this new concept to be well-suited in physics and enumerative combinatorics. We finally consider the more general problem of the equivalence of two different order-four linear differential Calabi-Yau operators up to pullbacks and conjugation, and clarify the cases where they have the same Yukawa couplings.



rate research

Read More

We consider differential operators between sections of arbitrary powers of the determinant line bundle over a contact manifold. We extend the standard notions of the Heisenberg calculus: noncommutative symbolic calculus, the principal symbol, and the contact order to such differential operators. Our first main result is an intrinsically defined subsymbol of a differential operator, which is a differential invariant of degree one lower than that of the principal symbol. In particular, this subsymbol associates a contact vector field to an arbitrary second order linear differential operator. Our second main result is the construction of a filtration that strengthens the well-known contact order filtration of the Heisenberg calculus.
We give examples of infinite order rational transformations that leave linear differential equations covariant. These examples are non-trivial yet simple enough illustrations of exact representations of the renormalization group. We first illustrate covariance properties on order-two linear differential operators associated with identities relating the same $_2F_1$ hypergeometric function with different rational pullbacks. We provide two new and more general results of the previous covariance by rational functions: a new Heun function example and a higher genus $_2F_1$ hypergeometric function example. We then focus on identities relating the same hypergeometric function with two different algebraic pullback transformations: such remarkable identities correspond to modular forms, the algebraic transformations being solution of another differentially algebraic Schwarzian equation that emerged in a paper by Casale. Further, we show that the first differentially algebraic equation can be seen as a subcase of the last Schwarzian differential condition, the restriction corresponding to a factorization condition of some associated order-two linear differential operator. Finally, we also explore generalizations of these results, for instance, to $_3F_2$, hypergeometric functions, and show that one just reduces to the previous $_2F_1$ cases through a Clausen identity. In a $_2F_1$ hypergeometric framework the Schwarzian condition encapsulates all the modular forms and modular equations of the theory of elliptic curves, but these two conditions are actually richer than elliptic curves or $_2F_1$ hypergeometric functions, as can be seen on the Heun and higher genus example. This work is a strong incentive to develop more differentially algebraic symmetry analysis in physics.
131 - W. Galleas 2018
This paper is a continuation of our previous work Six-vertex model and non-linear differential equations I. Spectral problem in which we have put forward a method for studying the spectrum of the six-vertex model based on non-linear differential equations. Here we intend to elaborate on that approach and also discuss properties of the spectrum unveiled by the aforementioned differential formulation of the transfer matrixs eigenvalue problem. In particular, we intend to demonstrate how this differential approach allows one to study continuous symmetries of the transfer matrixs spectrum through the Lie groups method.
124 - Piergiulio Tempesta 2014
A categorical theory for the discretization of a large class of dynamical systems with variable coefficients is proposed. It is based on the existence of covariant functors between the Rota category of Galois differential algebras and suitable categories of abstract dynamical systems. The integrable maps obtained share with their continuous counterparts a large class of solutions and, in the linear case, the Picard-Vessiot group.
We consider the resolvent of a system of first order differential operators with a regular singularity, admitting a family of self-adjoint extensions. We find that the asymptotic expansion for the resolvent in the general case presents powers of $lambda$ which depend on the singularity, and can take even irrational values. The consequences for the pole structure of the corresponding $zeta$ and $eta$-functions are also discussed.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا