Do you want to publish a course? Click here

Theory of Dzyaloshinskii domain wall tilt in ferromagnetic nanostrips

71   0   0.0 ( 0 )
 Added by Oleg Tretiakov
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an analytical theory of domain wall tilt due to a transverse in-plane magnetic field in a ferromagnetic nanostrip with out-of-plane anisotropy and Dzyaloshinskii-Moriya interaction (DMI). The theory treats the domain walls as one-dimensional objects with orientation-dependent energy, which interact with the sample edges. We show that under an applied field the domain wall remains straight, but tilts at an angle to the direction of the magnetic field that is proportional to the field strength for moderate fields and sufficiently strong DMI. Furthermore, we obtain a nonlinear dependence of the tilt angle on the applied field at weaker DMI. Our analytical results are corroborated by micromagnetic simulations.



rate research

Read More

We analyze the electric current and magnetic field driven domain wall motion in perpendicularly magnetized ultrathin ferromagnetic films in the presence of interfacial Dzyaloshinskii-Moriya interaction and both out-of-plane and in-plane uniaxial anisotropies. We obtain exact analytical Walker-type solutions in the form of one-dimensional domain walls moving with constant velocity due to both spin-transfer torques and out-of-plane magnetic field. These solutions are embedded into a larger family of propagating solutions found numerically. Within the considered model, we find the dependencies of the domain wall velocity on the material parameters and demonstrate that adding in-plane anisotropy may produce domain walls moving with velocities in excess of 500 m/s in realistic materials under moderate fields and currents.
We demonstrate optical manipulation of the position of a domain wall in a dilute magnetic semiconductor, GaMnAsP. Two main contributions are identified. Firstly, photocarrier spin exerts a spin transfer torque on the magnetization via the exchange interaction. The direction of the domain wall motion can be controlled using the helicity of the laser. Secondly, the domain wall is attracted to the hot-spot generated by the focused laser. Unlike magnetic field driven domain wall depinning, these mechanisms directly drive domain wall motion, providing an optical tweezer like ability to position and locally probe domain walls.
We investigate the magnetization dynamics in circular Permalloy dots with spatially separated magnetic vortices interconnected by domain walls (double vortex state). We identify a novel type of quasi one-dimensional (1D) localised spin wave modes confined along domain walls, connecting each of two vortex cores with two edge half-antivortices. Variation of the mode eigenfrequencies with the dot size is in quantitative agreement with the developed model, which considers a dipolar origin of the localized 1D spin waves or so-called Winters magnons [J.M. Winter, Phys.Rev. 124, 452 (1961)]. These spin waves are analogous to the displacement waves of strings, and could be excited in a wide class of patterned magnetic nanostructures possessing domain walls, namely in triangular, square, circular or elliptic magnetic dots.
The orientation of a chiral magnetic domain wall in a racetrack determines its dynamical properties. In equilibrium, magnetic domain walls are expected to be oriented perpendicular to the stripe axis. We demonstrate the appearance of a unidirectional domain wall tilt in out-of-plane magnetized stripes with biaxial anisotropy and Dzyaloshinskii--Moriya interaction (DMI). The tilt is a result of the interplay between the in-plane easy-axis anisotropy and DMI. We show that the additional anisotropy and DMI prefer different domain wall structure: anisotropy links the magnetization azimuthal angle inside the domain wall with the anisotropy direction in contrast to DMI, which prefers the magnetization perpendicular to the domain wall plane. Their balance with the energy gain due to domain wall extension defines the equilibrium magnetization the domain wall tilting. We demonstrate that the Walker field and the corresponding Walker velocity of the domain wall can be enhanced in the system supporting tilted walls.
It is well established that the spin-orbit interaction in heavy metal/ferromagnet heterostructures leads to a significant interfacial Dzyaloshinskii-Moriya Interaction (DMI) that modifies the internal structure of magnetic domain walls (DWs) to favor N{e}el over Bloch type configurations. However, the impact of such a transition on the structure and stability of internal DW defects (e.g., vertical Bloch lines) has not yet been explored. We present a combination of analytical and micromagnetic calculations to describe a new type of topological excitation called a DW Skyrmion characterized by a $360^circ$ rotation of the internal magnetization in a Dzyaloshinskii DW. We further propose a method to identify DW Skyrmions experimentally using Fresnel mode Lorentz TEM; simulated images of DW Skyrmions using this technique are presented based on the micromagnetic results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا