Do you want to publish a course? Click here

Nonexponential quantum decay under environmental decoherence

177   0   0.0 ( 0 )
 Added by Adolfo del Campo
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

An unstable quantum state generally decays following an exponential law, as environmental decoherence is expected to prevent the decay products from recombining to reconstruct the initial state. Here we show the existence of deviations from exponential decay in open quantum systems under very general conditions. Our results are illustrated with the exact dynamics under quantum Brownian motion and suggest an explanation of recent experimental observations.



rate research

Read More

Quantum technology is approaching a level of maturity, recently demonstrated in space-borne experiments and in-field measurements, which would allow for adoption by non-specialist users. Parallel advancements made in microprocessor-based electronics and database software can be combined to create robust, versatile and modular experimental monitoring systems. Here, we describe a monitoring network used across a number of cold atom laboratories with a shared laser system. The ability to diagnose malfunction, unexpected or unintended behaviour and passively collect data for key experimental parameters, such as vacuum chamber pressure, laser beam power, or resistances of important conductors, significantly reduces debugging time. This allows for efficient control over a number of experiments and remote control when access is limited.
In quantum optics, light-matter interaction has conventionally been studied using small atoms interacting with electromagnetic fields with wavelength several orders of magnitude larger than the atomic dimensions. In contrast, here we experimentally demonstrate the vastly different giant atom regime, where an artificial atom interacts with acoustic fields with wavelength several orders of magnitude smaller than the atomic dimensions. This is achieved by coupling a superconducting qubit to surface acoustic waves at two points with separation on the order of 100 wavelengths. This approach is comparable to controlling the radiation of an atom by attaching it to an antenna. The slow velocity of sound leads to a significant internal time-delay for the field to propagate across the giant atom, giving rise to non-Markovian dynamics. We demonstrate the non-Markovian character of the giant atom in the frequency spectrum as well as nonexponential relaxation in the time domain.
Decoherence induced by coupling a system with an environment may display universal features. Here we demostrate that when the coupling to the system drives a quantum phase transition in the environment, the temporal decay of quantum coherences in the system is Gaussian with a width independent of the system-environment coupling strength. The existence of this effect opens the way for a new type of quantum simulation algorithm, where a single qubit is used to detect a quantum phase transition. We discuss possible implementations of such algorithm and we relate our results to available data on universal decoherence in NMR echo experiments.
We investigate the dynamics of a quantum oscillator, whose evolution is monitored by a Bose-Einstein condensate (BEC) trapped in a symmetric double well potential. It is demonstrated that the oscillator may experience various degrees of decoherence depending on the variable being measured and the state in which the BEC is prepared. These range from a `coherent regime in which only the variances of the oscillator position and momentum are affected by measurement, to a slow (power law) or rapid (Gaussian) decoherence of the mean values themselves.
We introduce protocols for designing and manipulating qubits with ultracold alkali atoms in 3D optical lattices. These qubits are formed from two-atom spin superposition states that create a decoherence-free subspace immune to stray magnetic fields, dramatically improving coherence times while still enjoying the single-site addressability and Feshbach resonance control of state-of-the-art alkali atom systems. Our protocol requires no continuous driving or spin-dependent potentials, and instead relies upon the population of a higher motional band to realize naturally tunable in-site exchange and cross-site superexchange interactions. As a proof-of-principle example of their utility for entanglement generation for quantum computation, we show the cross-site superexchange interactions can be used to engineer 1D cluster states. Explicit protocols for experimental preparation and manipulation of the qubits are also discussed, as well as methods for measuring more complex quantities such as out-of-time-ordered correlation functions (OTOCs).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا