Do you want to publish a course? Click here

NMR studies of the incommensurate helical antiferromagnet EuCo2P2 : determination of the antiferromagnetic propagation vector

61   0   0.0 ( 0 )
 Added by Yuji Furukawa
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently Ding et al. [Phys. Rev. B 95, 184404 (2017)] reported that their nuclear magnetic resonance (NMR) study on EuCo$_2$As$_2$ successfully characterized the antiferromagnetic (AFM) propagation vector of the incommensurate helix AFM state, showing that NMR is a unique tool for determination of the spin structures in incommensurate helical AFMs. Motivated by this work, we have carried out $^{153}$Eu, $^{31}$P and $^{59}$Co NMR measurements on the helical antiferromagnet EuCo$_2$P$_2$ with an AFM ordering temperature $T_{rm N}$ = 66.5 K. An incommensurate helical AFM structure was clearly confirmed by $^{153}$Eu and $^{31}$P NMR spectra on single crystalline EuCo$_2$P$_2$ in zero magnetic field at 1.6 K and its external magnetic field dependence. Furthermore, based on $^{59}$Co NMR data in both the paramagnetic and the incommensurate AFM states, we have determined the model-independent value of the AFM propagation vector k = (0, 0, 0.73 $pm$ 0.09)2$pi$/$c$ where $c$ is the $c$-axis lattice parameter. The temperature dependence of k is also discussed.



rate research

Read More

The metallic compound EuCo2P2 with the body-centered tetragonal ThCr2Si2 structure containing Eu spins 7/2 was previously shown from single-crystal neutron diffraction measurements to exhibit a helical antiferromagnetic (AFM) structure below TN = 66.5 K with the helix axis along the c axis and with the ordered moments aligned within the ab-plane. Here we report crystallography, electrical resistivity, heat capacity, magnetization and magnetic susceptibility measurements on single crystals of this compound. We demonstrate that EuCo2P2 is a model molecular-field helical Heisenberg antiferromagnet from comparisons of the anisotropic magnetic susceptibility chi, high-field magnetization and magnetic heat capacity of EuCo2P2 single crystals at temperature T < TN with the predictions of our recent formulation of molecular field theory. Values of the Heisenberg exchange interactions between the Eu spins are derived from the data. The low-T magnetic heat capacity ~ T^3 arising from spin-wave excitations with no anisotropy gap is calculated and found to be comparable to the lattice heat capacity. The density of states at the Fermi energy of EuCo2P2 and the related compound BaCo2P2 are found from the heat capacity data to be large, 10 and 16 states/eV per formula unit for EuCo2P2 and BaCo2P2, respectively. These values are enhanced by a factor of ~2.5 above those found from DFT electronic structure calculations for the two compounds. The calculations also find ferromagnetic Eu-Eu exchange interactions within the ab-plane and AFM interactions between nearest- and next-nearest planes, in agreement with the MFT analysis of chi{ab}(T < TN).
80 - P. Khuntia , F. Bert , P. Mendels 2016
PbCuTe2O6 is a rare example of a spin liquid candidate featuring a three dimensional magnetic lattice. Strong geometric frustration arises from the dominant antiferromagnetic interaction which generates a hyperkagome network of Cu2+ ions although additional interactions enhance the magnetic lattice connectivity. Through a combination of magnetization measurements and local probe investigation by NMR and muSR down to 20 mK, we provide a robust evidence for the absence of magnetic freezing in the ground state. The local spin susceptibility probed by the NMR shift hardly deviates from the macroscopic one down to 1 K pointing to a homogeneous magnetic system with a low defect concentration. The saturation of the NMR shift and the sublinear power law temperature (T) evolution of the 1/T1 NMR relaxation rate at low T point to a non-singlet ground state favoring a gapless fermionic description of the magnetic excitations. Below 1 K a pronounced slowing down of the spin dynamics is witnessed, which may signal a reconstruction of spinon Fermi surface. Nonetheless, the compound remains in a fluctuating spin liquid state down to the lowest temperature of the present investigation.
86 - Yuji Furukawa 2015
We present a comprehensive review of nuclear magnetic resonance (NMR) studies performed on three nanoscale molecular magnets with different configurations of geometrically frustrated antiferromagnetic (AFM) triangles, new spin frustration systems with different novel structures: (1) the isolated single AFM triangle K$_6$[V$_{15}$As$_6$O$_{42}$(H$_2$O)]$cdot$8H$_2$O (in short V15), (2) the spin ball [Mo$_{72}$Fe$_{30}$O$_{252}$(Mo$_2$O$_7$(H$_2$O))$_2$ (Mo$_2$O$_8$H$_2$(H$_2$O))(CH$_3$COO)$_{12}$(H$_2$O)$_{91}$]$cdot$150H$_2$O (in short Fe30 spin ball), and (3) the twisted triangular spin tube [(CuCl$_2$tachH)$_3$Cl]Cl$_2$ (in short Cu3 spin tube).
We report on NMR studies of the quasi one--dimensional (1D) antiferromagnetic $S=1/2$ chain cuprate LiCuVO$_4$ in magnetic fields $H$ up to $mu_0H$ = 30 T ($approx 70$% of the saturation field $H_{rm sat}$). NMR spectra in fields higher than $H_{rm c2}$ ($mu_0H_{rm c2} approx 7.5$ T) and temperatures $T<T_{rm N}$ can be described within the model of a spin-modulated phase in which the magnetic moments are aligned parallel to the applied field $H$ and their values alternate sinusoidally along the magnetic chains. Based on theoretical concepts about magnetically frustrated 1D chains, the field dependence of the modulation strength of the magnetic structure is deduced from our experiments. Relaxation time $T_2$ measurements of the $^{51}$V nuclei show that $T_2$ depends on the particular position of the probing $^{51}$V nucleus with respect to the magnetic copper moments within the 1D chains: the largest $T_2$ value is observed for the vanadium nuclei which are very next to the magnetic Cu$^{2+}$ ion with largest ordered magnetic moment. This observation is in agreement with the expectation for the spin-modulated magnetic structure. The $(H,T)$ magnetic phase diagram of LiCuVO$_4$ is discussed.
We present an algorithm for the numeric calculation of antiferromagnetic resonance frequencies for the non-collinear antiferromagnets of general type. This algorithm uses general exchange symmetry approach cite{andrmar} and is applicable for description of low-energy dynamics of an arbitrary noncollinear spin structure in weak fields. Algorithm is implemented as a MatLab and C++ program codes, which are available for download. Program codes are tested against some representative analytically solvable cases.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا