Do you want to publish a course? Click here

Microwave photon generation in a doubly tunable superconducting resonator

73   0   0.0 ( 0 )
 Added by Ida-Maria Svensson
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have developed and tested a doubly tunable resonator, with the intention to simulate fast motion of the resonator boundaries in real space. Our device is a superconducting coplanar-waveguide half-wavelength microwave resonator, with fundamental resonant frequency ~5 GHz. Both of its ends are terminated by dc-SQUIDs, which serve as magnetic-flux-controlled inductances. Applying a flux to either SQUID allows tuning of the resonant frequency by approximately 700 MHz. By using two separate on-chip magnetic-flux lines, we modulate the SQUIDs with two tones of equal frequency, close to twice that of the resonators fundamental mode. We observe photon generation, at the fundamental frequency, above a certain pump amplitude threshold. By varying the relative phase of the two pumps we are able to control the photon generation threshold, in good agreement with a theoretical model for the modulation of the boundary conditions. At the same time, some of our observations deviate from the theoretical predictions, which we attribute to parasitic couplings, resulting in current driving of the SQUIDs.



rate research

Read More

We propose a scheme able to entangle at the steady state a nanomechanical resonator with a microwave cavity mode of a driven superconducting coplanar waveguide. The nanomechanical resonator is capacitively coupled with the central conductor of the waveguide and stationary entanglement is achievable up to temperatures of tens of milliKelvin.
We study a single-mode cavity weakly coupled to a voltage-biased quantum point contact. In a perturbative analysis, the lowest order predicts a thermal state for the cavity photons, driven by the emission noise of the conductor. The cavity is thus emptied as all transmission probabilities of the quantum point contact approach one or zero. Two-photon processes are identified at higher coupling, and pair absorption dominates over pair emission for all bias voltages. As a result, the number of cavity photons, the cavity damping rate and the second order coherence $g^{(2)}$ are all reduced and exhibit less bunching than the thermal state. These results are obtained with a Keldysh path integral formulation and reproduced with rate equations. They can be seen as a backaction of the cavity measuring the electronic noise. Extending the standard $P(E)$ theory to a steady-state situation, we compute the modified noise properties of the conductor and find quantitative agreement with the perturbative calculation.
Recent theoretical work has shown that radiation pressure effects can in principle cool a mechanical degree of freedom to its ground state. In this paper, we apply this theory to our realization of an opto-mechanical system in which the motion of mechanical oscillator modulates the resonance frequency of a superconducting microwave circuit. We present experimental data demonstrating the large mechanical quality factors possible with metallic, nanomechanical beams at 20 mK. Further measurements also show damping and cooling effects on the mechanical oscillator due to the microwave radiation field. These data motivate the prospects for employing this dynamical backaction technique to cool a mechanical mode entirely to its quantum ground state.
The combination of low mass density, high frequency, and high quality-factor of mechanical resonators made of two-dimensional crystals such as graphene make them attractive for applications in force sensing/mass sensing, and exploring the quantum regime of mechanical motion. Microwave optomechanics with superconducting cavities offers exquisite position sensitivity and enables the preparation and detection of mechanical systems in the quantum ground state. Here, we demonstrate coupling between a multilayer graphene resonator with quality factors up to 220,000 and a high-$textit{Q}$ superconducting cavity. Using thermo-mechanical noise as calibration, we achieve a displacement sensitivity of 17 fm/$sqrt{text{Hz}}$. Optomechanical coupling is demonstrated by optomechanically induced reflection (OMIR) and absorption (OMIA) of microwave photons. We observe 17 dB of mechanical microwave amplification and signatures of strong optomechanical backaction. We extract the cooperativity $C$, a characterization of coupling strength, quantitatively from the measurement with no free parameters and find $C=8$, promising for the quantum regime of graphene motion.
We experimentally and numerically study a NbN superconducting stripline resonator integrated with a microbridge. We find that the response of the system to monochromatic excitation exhibits intermittency, namely, noise-induced jumping between coexisting steady-state and limit-cycle responses. A theoretical model that assumes piecewise linear dynamics yields partial agreement with the experimental findings.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا