No Arabic abstract
Efficient magnetic braking is a formidable obstacle to the formation of rotationally supported disks (RSDs) around protostars in magnetized dense cores. We have previously shown, through 2D (axisymmetric) non-ideal MHD simulations, that removing very small grains (VSGs: ~10 AA$~$to few 100 AA) can greatly enhance ambipolar diffusion and enable the formation of RSDs. Here we extend the simulations of disk formation enabled by VSG removal to 3D. We find that the key to this scenario of disk formation is that the drift velocity of the magnetic field almost cancels out the infall velocity of the neutrals in the $10^2$-$10^3$ AU-scale pseudo-disk where the field lines are most severely pinched and most of protostellar envelope mass infall occurs. As a result, the bulk neutral envelope matter can collapse without dragging much magnetic flux into the disk-forming region, which lowers the magnetic braking efficiency. We find that the initial disks enabled by VSG removal tend to be Toomre-unstable, which leads to the formation of prominent spiral structures that function as centrifugal barriers. The piling-up of infall material near the centrifugal barrier often produces dense fragments of tens of Jupiter masses, especially in cores that are not too strongly magnetized. Some fragments accrete onto the central stellar object, producing bursts in mass accretion rate. Others are longer lived, although whether they can survive long-term to produce multiple systems remains to be ascertained. Our results highlight the importance of dust grain evolution in determining the formation and properties of protostellar disks and potentially multiple systems.
Truncated abstract: The formation of a protostellar disc is a natural outcome during the star formation process. As gas in a molecular cloud core collapses under self-gravity, the angular momentum of the gas will slow its collapse on small scales and promote the formation of a protostellar disc. Although the angular momenta of dense star-forming cores remain to be fully characterized observationally, existing data indicates that typical cores have enough angular momenta to form relatively large, rotationally supported discs. However, molecular clouds are observed to be permeated by magnetic fields, which can strongly affect the evolution of angular momentum through magnetic braking. Indeed, in the ideal MHD limit, magnetic braking has been shown to be so efficient as to remove essentially all of the angular momentum of the material close to the forming star such that disc formation is suppressed. This is known as the magnetic braking catastrophe. The catastrophe must be averted in order for the all-important rotationally supported discs to appear, but when and how this happens remains debated. We review the resolutions proposed to date, with emphasis on misalignment, turbulence and especially non-ideal effects. The dissipative non-ideal effects weaken the magnetic field, and the dispersive term redirects it to promote or hinder disc formation. When self-consistently applying non-ideal processes, rotationally supported discs of at least tens of au form, thus preventing the magnetic braking catastrophe. The non-ideal processes are sensitive to the magnetic field strength, cosmic ray ionization rate, and gas and dust grain properties, thus a complete understanding of the host molecular cloud is required. Therefore, the properties of the host molecular cloud -- and especially its magnetic field -- cannot be ignored when numerically modelling the formation and evolution of protostellar discs.
We present results of 1.3 mm dust polarization observations toward 16 nearby, low-mass protostars, mapped with ~2.5 resolution at CARMA. The results show that magnetic fields in protostellar cores on scales of ~1000 AU are not tightly aligned with outflows from the protostars. Rather, the data are consistent with scenarios where outflows and magnetic fields are preferentially misaligned (perpendicular), or where they are randomly aligned. If one assumes that outflows emerge along the rotation axes of circumstellar disks, and that the outflows have not disrupted the fields in the surrounding material, then our results imply that the disks are not aligned with the fields in the cores from which they formed.
We investigate the formation and early evolution and fragmentation of an accretion disk around a forming massive protostar. We use a grid-based self-gravity-radiation-hydrodynamics code including a sub-grid module for stellar and dust evolution. On purpose, we do not use sink particles to allow for all paths of fragment formation and destruction, but instead keeping the spatial grid resolution high enough to properly resolve the physical length scales of the problem. We use a 3D grid in spherical coordinates with a logarithmic scaling in the radial direction and cosine scaling in the polar direction. Because of that, roughly 25% of the total number of grid cells, corresponding to $sim$ 26 million grid cells, are used to model the disk physics. They constitute the highest resolution simulations performed up to now on disk fragmentation around a forming massive star with the physics considered here. We study the convergence of our results by performing the same simulation for 5 different resolutions. We start from the collapse of a molecular cloud; a massive (proto)star is formed in its center, surrounded by a fragmenting Keplerian-like accretion disk with spiral arms. The fragments have masses of $sim 1 M_odot$, and their continuous interactions with the disk, spiral arms and other fragments results in eccentric orbits. Fragments form hydrostatic cores, surrounded by secondary disks with spiral arms that also produce new fragments. We identified several mechanisms of fragment formation, interaction and destruction. Central temperatures of the fragments can reach the hydrogen dissociation limit, form second Larson cores and evolve into companion stars. Based on this, we study the multiplicity predicted by the simulations and find $sim 6$ companions at different distances from the primary: from possible spectroscopic multiples, to companions at distances between 1000 and 2000 au.
Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. In the simplest case of a laminar (non-turbulent) core with the magnetic field aligned with the rotation axis, both analytic considerations and numerical simulations have shown that the formation of a large, $10^2au$-scale, rotationally supported protostellar disk is suppressed by magnetic braking in the ideal MHD limit for a realistic level of core magnetization. This theoretical difficulty in forming protostellar disks is termed magnetic braking catastrophe. A possible resolution to this problem, proposed by citeauthor{HennebelleCiardi2009} and citeauthor{Joos+2012}, is that misalignment between the magnetic field and rotation axis may weaken the magnetic braking enough to enable disk formation. We evaluate this possibility quantitatively through numerical simulations. We confirm the basic result of citeauthor{Joos+2012} that the misalignment is indeed conducive to disk formation. In relatively weakly magnetized cores with dimensionless mass-to-flux ratio $gtrsim 5$, it enabled the formation of rotationally supported disks that would otherwise be suppressed if the magnetic field and rotation axis are aligned. For more strongly magnetized cores, disk formation remains suppressed, however, even for the maximum tilt angle of $90degree$. If dense cores are as strongly magnetized as indicated by OH Zeeman observations (with a mean dimensionless mass-to-flux ratio $sim 2$), it would be difficult for the misalignment alone to enable disk formation in the majority of them. We conclude that, while beneficial to disk formation, especially for the relatively weak field case, the misalignment does not completely solve the problem of catastrophic magnetic braking in general.
Determining the locations of the major snowlines in protostellar environments is crucial to fully understand the planet formation process and its outcome. Despite being located far enough from the central star to be spatially resolved with ALMA, the CO snowline remains difficult to detect directly in protoplanetary disks. Instead, its location can be derived from N$_2$H$^+$ emission, when chemical effects like photodissociation of CO and N$_2$ are taken into account. The water snowline is even harder to observe than that for CO, because in disks it is located only a few AU from the protostar, and from the ground only the less abundant isotopologue H$_2^{18}$O can be observed. Therefore, using an indirect chemical tracer, as done for CO, may be the best way to locate the water snowline. A good candidate tracer is HCO$^+$, which is expected to be particularly abundant when its main destructor, H$_2$O, is frozen out. Comparison of H$_2^{18}$O and H$^{13}$CO$^+$ emission toward the envelope of the Class 0 protostar IRAS2A shows that the emission from both molecules is spatially anticorrelated, providing a proof of concept that H$^{13}$CO$^+$ can indeed be used to trace the water snowline in systems where it cannot be imaged directly.