Do you want to publish a course? Click here

Performance measurement of HARPO: a Time Projection Chamber as a gamma-ray telescope and polarimeter

65   0   0.0 ( 0 )
 Added by Philippe Gros
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyse the performance of a gas time projection chamber (TPC) as a high-performance gamma-ray telescope and polarimeter in the e$^+$e$^-$ pair creation regime. We use data collected at a gamma-ray beam of known polarisation. The TPC provides two orthogonal projections $(x,z)$ and $(y,z)$ of the tracks induced by each conversion in the gas volume. We use a simple vertex finder in which vertices and pseudo-tracks exiting from them are identified. We study the various contributions to the single-photon angular resolution using Monte Carlo simulations and compare them with the experimental data and find that they are in excellent agreement. The distribution of the azimutal angle of pair



rate research

Read More

120 - Qing Lin , Yuehuan Wei , Jie Bao 2013
Dual phase Xenon Time Projection Chambers (XeTPCs) are being used by several experiments as a promising technique for direct detection of dark matter. We report on the design and performance of a small 3-D sensitive dual phase XeTPC. The position resolution is 2 mm in the center of detector, limited by the hole size of the mesh at the proportional scintillation region. An energy resolution of 1.6%({sigma} /E) for 662 keV gamma rays is achieved by combining the ionization and scintillation signals at a drift field of 0.5 kV/cm. This represents the best energy resolution achieved among liquid xenon detectors. The energy resolution is only slightly dependent on drift field. Better than 2% energy resolution ({sigma} /E) for 662 keV gamma rays can be achieved for drift fields between 100 V/cm and 2 kV/cm. With high position and energy resolutions, a dual phase XeTPC has also potential applications in surveys for neutrinoless double-beta decay and in gamma ray imaging.
The ANTARES deep-sea neutrino telescope comprises a three-dimensional array of photomultipliers to detect the Cherenkov light induced by upgoing relativistic charged particles originating from neutrino interactions in the vicinity of the detector. The large scattering length of light in the deep sea facilitates an angular resolution of a few tenths of a degree for neutrino energies exceeding 10 TeV. In order to achieve this optimal performance, the time calibration procedures should ensure a relative time calibration between the photomultipliers at the level of about 1ns. The methods developed to attain this level of precision are described.
For the International Large Detector concept at the planned International Linear Collider, the use of time projection chambers (TPC) with micro-pattern gas detector readout as the main tracking detector is investigated. In this paper, results from a prototype TPC, placed in a 1 T solenoidal field and read out with three independent GEM-based readout modules, are reported. The TPC was exposed to a 6 GeV electron beam at the DESY II synchrotron. The efficiency for reconstructing hits, the measurement of the drift velocity, the space point resolution and the control of field inhomogeneities are presented.
90 - J. Kwong , P. Brusov , T. Shutt 2009
The energy and electric field dependence of pulse shape discrimination in liquid xenon have been measured in a 10 gm two-phase xenon time projection chamber. We have demonstrated the use of the pulse shape and charge-to-light ratio simultaneously to obtain a leakage below that achievable by either discriminant alone. A Monte Carlo is used to show that the dominant fluctuation in the pulse shape quantity is statistical in nature, and project the performance of these techniques in larger detectors. Although the performance is generally weak at low energies relevant to elastic WIMP recoil searches, the pulse shape can be used in probing for higher energy inelastic WIMP recoils.
A micro time-projection-chamber (micro-TPC) with a detection volume of 23*28*31 cm^3 was developed, and its fundamental performance was examined. The micro-TPC consists of a micro pixel chamber with a detection area of 31*31 cm^2 as a two-dimensional imaging device and a gas electron multiplier with an effective area of 23*28 cm^2 as a pre-gas-multiplier. The micro-TPC was operated at a gas gain of 50,000, and energy resolutions and spatial resolutions were measured.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا