No Arabic abstract
Understanding and controlling the interfacial magnetic properties of ferromagnetic thin films are crucial for spintronic device applications. However, using conventional magnetometry, it is difficult to detect them separately from the bulk properties. Here, by utilizing tunneling anisotropic magnetoresistance in a single-barrier heterostructure composed of La0.6Sr0.4MnO3 (LSMO)/ LaAlO3 (LAO)/ Nb-doped SrTiO3 (001), we reveal the presence of a peculiar strong two-fold magnetic anisotropy (MA) along the [110]c direction at the LSMO/LAO interface, which is not observed in bulk LSMO. This MA shows unknown behavior that the easy magnetization axis rotates by 90{deg} at an energy of 0.2 eV below the Fermi level in LSMO. We attribute this phenomenon to the transition between the eg and t2g bands at the LSMO interface. Our finding and approach to understanding the energy dependence of the MA demonstrate a new possibility of efficient control of the interfacial magnetic properties by controlling the band structures of oxide heterostructures.
We report on the study of both perpendicular magnetic anisotropy (PMA) and Dzyaloshinskii-Moriya interaction (DMI) at an oxide/ferromagnetic metal (FM) interface, i.e. BaTiO3 (BTO)/CoFeB. Thanks to the functional properties of the BTO film and the capability to precisely control its growth, we are able to distinguish the dominant role of the oxide termination (TiO2 vs BaO), from the moderate effect of ferroelectric polarization in the BTO film, on the PMA and DMI at the oxide/FM interface. We find that the interfacial magnetic anisotropy energy of the BaO-BTO/CoFeB structure is two times larger than that of the TiO2-BTO/CoFeB, while the DMI of the TiO2-BTO/CoFeB interface is larger. We explain the observed phenomena by first-principles calculations, which ascribe them to the different electronic states around the Fermi level at the oxide/ferromagnetic metal interfaces and the different spin-flip processes. This study paves the way for further investigation of the PMA and DMI at various oxide/FM structures and thus their applications in the promising field of energy-efficient devices.
In this paper, we report the electrical and structural properties of the oxide-based metal/ferroelectric/metal (MFM) junctions. The heterostructures are composed of ultrathin layers of La0.7Ca0.3MnO3 (LCMO) as a metallic layer and, BaTiO3 (BTO) as a ferroelectric layer. Junction based devices, having the dimensions of 400 x 200 micom2, have been fabricated upon LCMO/BTO/LCMO heterostructures by photolithography and Ar-ion milling technique. The DC current-voltage (I-V) characteristics of the MFM junctions were carried out. At 300 K, the devices showed the linear (I-V) characteristics, whereas at 77 K, (I-V) curves exhibited some reproducible switching behaviours with well-defined remnant currents. The resulting resistance modulation is very different from what was already reported in ultrathin ferroelectric layers displaying resistive switching. A model is presented to explain the datas
Atomically flat interfaces between ternary oxides have chemically different variants, depending on the terminating lattice planes of both oxides. Electronic properties change with the interface termination which affects, for instance, charge accumulation and magnetic interactions at the interface. Well-defined terminations have yet rarely been achieved for oxides of ABO3 type (with metals A, B). Here, we report on a strategy of thin film growth and interface characterization applied to fabricate the La0.7Sr0.3MnO3-SrRuO3 interface with controlled termination. Ultra-strong antiferromagnetic coupling between the ferromagnets occurs at the MnO2-SrO interface, but not for the other termination, in agreement with density functional calculations. X-ray magnetic circular dichroism measurements reveal coupled reversal of Mn and Ru magnetic moments at the MnO2-SrO interface. Our results demonstrate termination control of magnetic coupling across a complex oxide interface and provide a pathway for theoretical and experimental explorations of novel electronic interface states with engineered magnetic properties.
Introducing magnetic order into a topological insulator (TI) system has been attracting much attention with an expectation of realizing exotic phenomena such as quantum anomalous Hall effect (QAHE) or axion insulator states. The magnetic proximity effect (MPE) is one of the promising schemes to induce the magnetic order on the surface of TI without introducing disorder accompanied by doping magnetic impurities in TI. In this study, we investigate the MPE at the interface of a heterostructure consisting of a topological crystalline insulator (TCI) SnTe and Fe by employing polarized neutron reflectometry. The ferromagnetic order penetrates $sim$ 3 nm deep into the SnTe layer from the interface with Fe, which persists up to room temperature. Our findings demonstrate that the interfacial magnetism is induced by the MPE on the surface of TCI preserving the coherent topological states, which is essential for the bulk-edge correspondence, without introducing disorder arising from a random distribution magnetic impurities. This opens up a way for realizing next generation electronics, spintronics, and quantum computational devices by making use of the characteristics of TCI.
In semiconducting materials, electrostatic gating and light illumination are widely used stimuli to tune the electronic properties of the system. Here, we show a significant enhancement of photoresponse at the conducting interface of LaVO3-SrTiO3 under the simultaneous application of light and negative gate bias voltage, in comparison to their individual application. On the other hand, the LaVO3-SrTiO3 interface remains largely insensitive to light illumination, when a positive gate bias voltage is applied. Our X-ray diffractometer, Raman spectroscopy and photoemission measurements show that unlike the LaAlO3-SrTiO3 interface, migration of oxygen vacancies is not the prime mechanism for the enhanced photoresponse. Rather, we suggest that the photoresponse of our system is intrinsic and this intrinsic mechanism is a complex interplay between band filling, electric field at the interface, strong electron interaction due to mottness of LaVO3 and modification of conducting channel width.