Do you want to publish a course? Click here

Magnetization of potassium doped p-terphenyl and p-quaterphenyl by high pressure synthesis

72   0   0.0 ( 0 )
 Added by Hai Lin
 Publication date 2017
  fields Physics
and research's language is English




Ask ChatGPT about the research

By using high pressure synthesis method, we have fabricated the potassium doped para-terphenyl. The temperature dependence of magnetization measured in both zero-field-cooled and field-cooled processes shows step like transitions at about 125 K. This confirms earlier report about the possible superconductivity like transition in the same system. However, the magnetization hysteresis loop exhibits a weak ferromagnetic background. After removing this ferromagnetic background, a Meissner effect like magnetic shielding can be found. A simple estimate on the diamagnetization of this step tells that the diamagnetic volume is only about 0.0427% at low temperatures, if we assume the penetration depth is much smaller than the size of possible superconducting grains. This magnetization transition does not shift with magnetic field but is suppressed and becomes almost invisible above 1.0 T. The resistivity measurements are failed because of an extremely large resistance. By using the same method, we also fabricated the potassium doped para-quaterphenyl. A similar step like transition at about 125 K was also observed by magnetization measurement. Since there is an unknown positive background and the diamagnetic volume is too small, it is insufficient to conclude that this step is derived from superconductivity although it looks like.



rate research

Read More

63 - P. Neha , V. Sahu , 2017
Synthesis methodology for flakes of p-terphenyl through sublimation under inert atmosphere of argon is presented. Flake morphology of p-terphenyl provides a favourable environment for efficient intercalation of potassium. Ratio of potassium and p-terphenyl is adjusted so as to obtain the desired superconducting phase i.e. potassium doped p-terphenyl (K3C18H14). A clear transition is observed at 107 K under Zero Field Cooled (ZFC) and Field Cooled (FC) mode. But overall the moment is positive possibly due to impurity phase dominating characteristics in the presence of negligible superconducting volume fraction. The M-H loop taken at 20 K shows magnetic behaviour in synthesized K- doped p-terphenyl but upon background subtraction, it does exhibit characteristics of a type-2 superconductor.
The potassium-doped p-terphenyl compounds were synthesized in recent experiments and the superconductivity with high transition temperatures were reported, but the atomic structure of potassium-doped p-terphenyl is unclear. In this paper, we studied the structural and electronic properties of potassium-doped p-terphenyl with various doping levels by the first-principles simulation. We first find out the low energy position of K atom in intralayer interstitial space of the molecular layer, then examine whether two rows of K atoms can be accommodated in this one space, at last the effect of the interlayer arrangement between adjacent two molecular layers on total energy is taken into account. Our results show that the doped K atoms prefer to stay at the bridge site of single C-C bond connected two phenyls instead of locating at the site above the phenyl ring, distinct from the situation of K-doped picene and phenanthrene. Among the possible structural phases of Kx-p-terphenyl, the K2-p-terphenyl phase with P212121 group symmetry is determined to be most appropriate, which is different from the one in recent report. The stable K 2 -p-terphenyl phase is semiconducting with an energy gap of 0.3 eV and the bands from the lowest unoccupied molecular orbitals are just fully filled by the electrons transferred from K atoms.
135 - M. Q. Ren , W. Chen , Q. Liu 2017
Recently, superconductivity in potassium (K) doped p-terphenyl (C18H14) has been suggested by the possible observation of the Meissner effect and subsequent photoemission spectroscopy measurements, but the detailed lattice structure and more-direct evidence are still lacking. Here we report a low temperature scanning tunneling microscopy/spectroscopy (STM/STS) study on K-doped single layer p-terphenyl films grown on Au (111). We observe several ordered phases with different morphologies and electronic behaviors, in two of which a sharp and symmetric low-energy gap of about 11 meV opens below 50 K. In particular, the gap shows no obvious response to a magnetic field up to 11 Tesla, which would caution against superconductivity as an interpretation in previous reports of K-doped p-terphenyl materials. Such gapped phases are rarely (if ever) observed in single layer hydrocarbon molecular crystals. Our work also paves the way for fabricating doped two-dimensional (2D) hydrocarbon materials, which will provide a platform to search for novel emergent phenomena.
Recent experiments have reported the emergence of high temperature superconductivity with critical temperature $T_c$ between 43K and 123K in a potassium doped aromatic hydrocarbon para-Terphenyl or p-Terphenyl. This achievement provides the record for the highest Tc in an organic superconductor overcoming the previous record of Tc=38 K in Cs3C60 fulleride. Here we propose that the driving mechanism is the quantum resonance between superconducting gaps near a Lifshitz transition which belongs to the class of Fano resonances called shape resonances. For the case of p-Terphenyl our numerical solutions of the multi gap equation shows that high Tc is driven by tuning the chemical potential by K doping and it appears only in a narrow energy range near a Lifshitz transition. At the maximum critical temperature, Tc=123K, the condensate in the appearing new small Fermi surface pocket is in the BCS-BEC crossover while the Tc drops below 0.3 K where it is in the BEC regime. Finally we predict the experimental results which can support or falsify our proposed mechanism: a) the variation of the isotope coefficient as a function of the critical temperature and b) the variation of the gaps and their ratios 2Delta/Tc as a function of Tc.
Preliminary evidence for the occurrence of high-Tc superconductivity in alkali-doped organic materials, such as potassium-doped p-terphenyl (KPT), were recently obtained by magnetic susceptibility measurements and by the opening of a large superconducting gap as measured by ARPES and STM techniques. In this work, KPT samples have been synthesized by a chemical method and characterized by low-temperature Raman scattering and resistivity measurements. Here, we report the occurrence of a resistivity drop of more than 4 orders of magnitude at low temperatures in KPT samples in the form of compressed powder. This fact was interpreted as a possible sign of a broad superconducting transition taking place below 90 K in granular KPT. The granular nature of the KPT system appears to be also related to the 20 K broadening of the resistivity drop around the critical temperature.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا