No Arabic abstract
We present resistance versus temperature data for a series of boron-doped nanocrystalline diamond films whose grain size is varied by changing the film thickness. Upon extracting the fluctuation conductivity near to the critical temperature we observe three distinct scaling regions -- 3D intragrain, quasi-0D, and 3D intergrain -- in confirmation of the prediction of Lerner, Varlamov and Vinokur. The location of the dimensional crossovers between these scaling regions allows us to determine the tunnelling energy and the Thouless energy for each film. This is a demonstration of the use of emph{fluctuation spectroscopy} to determine the properties of a superconducting granular system.
Boron-doped diamond granular thin films are known to exhibit superconductivity with an optimal critical temperature of Tc = 7.2K. Here we report the measured complex surface impedance of Boron-doped diamond films in the microwave frequency range using a resonant technique. Experimentally measured inductance values are in good agreement with estimates obtained from the normal state sheet resistance of the material. The magnetic penetration depth temperature dependence is consistent with that of a fully-gapped s-wave superconductor. Boron-doped diamond films should find application where high kinetic inductance is needed, such as microwave kinetic inductance detectors and quantum impedance devices.
The magnetic field dependence of the superconductivity in nanocrystalline boron doped diamond thin films is reported. Evidence of a glass state in the phase diagram is presented, as demonstrated by electrical resistance and magnetic relaxation measurements. The position of the phase boundary in the H-T plane is determined from resistance data by detailed fitting to zero-dimensional fluctuation conductivity theory. This allows determination of the boundary between resistive and non-resistive behavior to be made with greater precision than the standard ad hoc onset/midpoint/offset criterion.
We suggest to use `fluctuation spectroscopy as a method to detect granularity in a disordered metal close to a superconducting transition. We show that with lowering temperature $T$ the resistance $R(T)$ of a system of relatively large grains initially grows due to the fluctuation suppression of the one-electron tunneling but decreases with further lowering $T$ due to the coherent charge transfer of the fluctuation Cooper pairs. Under certain conditions, such a maximum in $R(T)$ turns out to be sensitive to weak magnetic fields due to a novel Maki -- Thompson type mechanism.
We investigate the possibility of finding a zero-temperature metallic phase in granular superconducting films. We are able to identify the breakdown of the conventional treatment of these systems as dissipative Bose systems. We do not find a metallic state at zero temperature. At finite temperatures, we find that the system exhibit crossover behaviour which may have implications for the analysis of experimental results. We also investigate the effect of vortex dissipation in these systems.
Inelastic neutron scattering provides a probe for studying the spin and momentum structure of the superconducting gap. Here, using a two-orbital model for the Fe-pnicitide superconductors and an RPA-BCS approximation for the dynamic spin susceptibility, we explore the scattering response for various gaps that have been proposed.